Extrait du CNC Marocain pour 1ère Année

Année 2024

Filière MP

Exercice

On désigne par $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles d'ordre 3. On note $\mathcal{B} = (e_1, e_2, e_3)$ a base canonique de \mathbb{R}^3 et par I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$. On considère dans $\mathcal{M}_3(\mathbb{R})$ les matrices suivantes:

$$A = \frac{1}{2} \begin{pmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ -1 & -1 & 5 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} 2 & 2 & -2 \\ -3 & -1 & 5 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1. a) Vérifier que $PQ = 4I_3$.
 - b) En déduire que P est une matrice inversible et calculer sa matrice inverse P^{-1} .
- 2. On considère les vecteurs suivants :

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \text{ et } w = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

- a) Montrer que Au = u, Av = 2v et Aw = 2w.
- Question modifiée pour s'adapter à la lère année
- b) Montrer qu'il existe une matrice diagonale D à préciser telle que $A = PDP^{-1}$.
- 3. a) Montrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.
 - b) Déterminer, pour tout entier naturel n, D^n en fonction de n.
 - c) En déduire pour tout entier naturel n, l'expression de A^n en fonction de n sous forme d'un tableau.

Problème

Dans tout le problème $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on désigne par E un espace vectoriel sur \mathbb{K} de dimension $n, n \geq 1$ et par $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E. On note $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{K} , $GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ et I_n la matrice unité de $\mathcal{M}_n(\mathbb{K})$. Pour $f \in \mathcal{L}(E)$, on note $f^0 = \mathrm{id}_E$ et pour tout entier naturel $k, f^{k+1} = f^k \circ f$ où id_E désigne l'application identité de E.

On dit que f est un endomorphisme nilpotent s'il existe un entier naturel non nul p tel que $f^p = 0$, le plus petit entier naturel non nul p vérifiant cette propriété est appelé indice de nilpotence de f.

Partie 1: Noyaux itérés

Soit $f \in \mathcal{L}(E)$, on note pour tout entier naturel $k, \mathcal{N}_k = \mathrm{Ker}\left(f^k\right)$ et $\mathcal{I}_k = \mathrm{Im}\left(f^k\right)$.

- 1. Montrer que la suite $(\mathcal{N}_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(\mathcal{I}_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
- 2. En déduire que $(\dim \mathcal{N}_k)_{k\in\mathbb{N}}$ est une suite croissante d'entiers naturels.
- 3. Justifier l'existence d'un plus petit entier naturel q tel que $\mathcal{N}_q = \mathcal{N}_{q+1}$.
- 4. Montrer que $\mathcal{I}_q = \mathcal{I}_{q+1}$.
- **5.** Montrer que $\mathcal{N}_q \oplus \mathcal{I}_q = E$,
- **6.** On considère pour tout entier naturel k, φ_k la restriction de f a \mathcal{I}_k .
 - a) Montrer que dim $\mathcal{I}_k \dim \mathcal{I}_{k+1} = \dim (\operatorname{Ker}(f) \cap \mathcal{I}_k)$.
 - b) En déduire que la suite $(\dim \mathcal{N}_{k+1} \dim \mathcal{N}_k)_{k \in \mathbb{N}}$ est décroissante.

Partie 2 : Les endomorphismes nilpotents de rang n-1

Soit U une matrice de $\mathcal{M}_n(\mathbb{C})$, de rang n-1. On note u l'endomorphisme de E canoniquement associé a U. $(E=\mathbb{C}^n)$

- 1. Soient r et s deux entiers naturels et v la restriction de u^s à $\text{Im}(u^r)$.
 - a) Vérifier que $\operatorname{Im}(v) = \operatorname{Im}(u^{s+r})$.
 - **b)** Montrer que $Ker(v) \subset Ker(u^s)$.
 - c) Montrer que dim $(\text{Ker}(u^{r+s})) \leq \text{dim}(\text{Ker}(u^r)) + \text{dim}(\text{Ker}(u^s)).$
 - d) En déduire que pour tout entier naturel i, dim $(\text{Ker }(u^i)) \leq i$.
- 2. On suppose de plus que $U^n = 0$.
 - a) Montrer que pour tout entier i tel que $1 \le i \le n$, dim $(\text{Ker}(u^i)) = i$.
 - b) Montrer que l'indice de nilpotence de u est égal à n.
 - c) En déduire qu'il existe un vecteur e de E tel que $\mathcal{B}_e = (e, u(e), \dots, u^{n-1}(e))$ soit une base de E.
 - d) Ecrire la matrice de u dans la base \mathcal{B}_e .
- **3.** Montrer que deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$ de rang n-1 sont semblables.

Partie 3: Cycles

Dans cette partie, on prend $\mathbb{K} = \mathbb{C}$. On dit qu'un endomorphisme f de E est cyclique d'ordre un entier naturel non nul p s'il existe x_0 de E vérifiant les conditions :

- $f^p(x_0) = x_0$.
- $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est une famille génératrice de E dont les éléments sont distincts deux a deux.

On dit alors que la famille $(x_0, f(x_0), \dots, f^{p-1}(x_0))$ est un p- cycle de f.

- **1.** Soit $(x_0, f(x_0), ..., f^{p-1}(x_0))$ un p- cycle de f.
 - a) Montrer que $f^p = id_E$.
 - **b)** Montrer que l'ensemble $F_{x_0} = \{k \in \mathbb{N}^* \mid (x_0, f(x_0), \dots, f^{k-1}(x_0)) \text{ est une famille libre}\}$ admet un maximum noté γ .
 - c) i) Montrer que pour tout entier k tel que $k \geq \gamma$, $f^{k}(x_{0}) \in \text{Vect}(x_{0}, f(x_{0}), \dots, f^{\gamma-1}(x_{0}))$.
 - ii) Montrer que $\gamma = n$.
- **2.** Soit $\mathcal{B}_{x_0} = \left(x_0, f\left(x_0\right), \dots, f^{n-1}\left(x_0\right)\right)$ un n-cycle de f.
 - a) Justifier que \mathcal{B}_{x_0} est une base de E.
 - b) Déterminer la matrice G de l'endomorphisme f dans la base B_{x_0} .
- 3. Soit $M = (m_{k,l})_{1 \leq k,l \leq n}$ de $\mathcal{M}_n(\mathbb{C})$, telle que $m_{k,l} = \overline{\omega}^{kl}$. On note $\overline{M} = (\overline{m}_{k,l})_{1 \leq k,l \leq n}$, où $\overline{m}_{k,l}$ est le conjugué de $m_{k,l}$.
 - a) Calculer $M \overline{M}$.
 - **b)** En déduire que $M \in GL_n(C)$ et calculer M^{-1}