Petites Mines 1996

PROBLÈME

Soit (u_n) une suite de réels non nuls, on lui associe la suite (p_n) définie par :

$$\forall n \in \mathbb{N}^* \quad p_n = \prod_{p=1}^n u_p = u_1 u_2 \cdots u_n$$

On dit que le produit (p_n) converge si et seulement si la suite (p_n) admet une limite finie non nulle. Sinon, on dit que le produit (p_n) diverge.

Première partie

- 1. En considérant le quotient p_{n+1}/p_n montrer que, pour que le produit (p_n) converge, il est nécessaire que la suite (u_n) converge vers 1.
- 2. Soit

$$p_n = \prod_{p=1}^n \left(1 + \frac{1}{p}\right)$$

Montrer que

$$\forall n \geqslant 1 \quad p_n = n + 1$$

Quelle est la nature du produit (p_n) ?

3. Soient un réel a différent de $k\pi$ $(k \in \mathbb{Z})$ et

$$p_n = \prod_{p=1}^n \cos \frac{a}{2^p}$$

Pour tout entier naturel n non nul, calculer $p_n \sin(a/2^n)$ en déduire que le produit (p_n) converge et donner la limite de la suite (p_n) .

Deuxième partie

- 1. Soit (p_n) un produit associé à une suite (u_n) qui converge vers 1.
 - (a) Montrer qu'il existe un entier n_0 tel que :

$$\forall n \geqslant n_0 \quad u_n > 0$$

(b) On pose

$$S_n = \sum_{p=n_0}^n \ln u_p$$

Montrer que la convergence de la suite (S_n) équivaut à la convergence du produit (p_n) . Lorsque (S_n) converge vers l donner la limite de la suite (p_n) en fonction de l.

2. Soit
$$p_n = \prod_{p=1}^n \sqrt[p]{p}$$
 et $S_n = \sum_{p=1}^n \frac{\ln p}{p}$

(a) Montrer que
$$\forall p \geqslant 3$$
 $\int_{p}^{p+1} \frac{\ln x}{x} dx \leqslant \frac{\ln p}{p}$

(b) En déduire la nature de la suite (S_n) et du produit (p_n) .

Troisième partie

1. Soit
$$p_n = \prod_{p=1}^n (1 + v_p)$$

où (v_n) est une suite de réels strictement positifs qui converge vers 0. On pose

$$S_n' = \sum_{p=1}^n v_p$$

(a) Montrer que

$$\forall x \in \mathbb{R}_+^* \quad \ln(1+x) < x$$

- (b) Montrer que la suite (S'_n) est croissante.
- (c) Montrer que si la suite (S'_n) converge, alors le produit (p_n) converge.
- 2. Déduire de la question 2 (de la partie I) la limite de la suite (S'_n) définie par

$$S_n' = \sum_{p=1}^n \frac{1}{p}$$

3. Soit

$$p_n = \prod_{p=1}^n \left(1 + a^{2^p}\right)$$

où $a \in \mathbb{R}_+^*$.

- (a) Que dire de la nature du produit (p_n) lorsque $a \ge 1$?
- (b) On suppose $a \in [0, 1]$
 - i. Montrer que le produit (p_n) converge.
 - ii. Pour tout entier naturel n non nul, calculer $(1 a^2) p_n$ et en déduire la limite de la suite (p_n) .

Corrigé

Problème

1. On suppose que le produit (p_n) converge. Montrons que (u_n) converge vers 1. On a :

$$\forall n \geqslant 2 \quad u_n = \frac{p_n}{p_{n-1}}$$

Or, par convergence du produit (p_n) , on en déduit qu'il existe $l \neq 0$ tel que $p_n \xrightarrow[n \to +\infty]{} l$. Donc $u_n = p_n/p_{n-1} \xrightarrow[n \to +\infty]{} 1$.

Si le produit
$$(p_n)$$
 converge, alors $u_n \xrightarrow[n \to +\infty]{} 1$.

2. Puisque $1+1/p=\left(p+1\right)/p,$ on en déduit que :

$$p_n = \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \frac{n+1}{n}$$

Ce qui montre immédiatement que $p_n = (n+1)$. Montrons rigoureusement ce résultat par récurrence sur n.

$$\mathcal{H}_n$$
: « $p_n = n + 1$ »

- \mathcal{H}_1 est vraie. En effet $p_1 = 2$.
- $-\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. En effet, soit $n \geqslant 1$. On suppose que \mathcal{H}_n est vraie. Montrons que \mathcal{H}_{n+1} est vraie. On a :

$$p_{n+1} = \prod_{p=1}^{n+1} \left(1 + \frac{1}{p} \right) = \left(1 + \frac{1}{n+1} \right) \prod_{p=1}^{n} \left(1 + \frac{1}{p} \right)$$
$$= \frac{n+2}{n+1} (n+1) = n+2 = (n+1) + 1$$

Donc \mathcal{H}_{n+1} est vraie.

Par récurrence sur n on en déduit que \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$. Donc :

$$\forall n\in\mathbb{N}^*\quad p_n=n+1$$
 Comme $n+1\xrightarrow[n\to+\infty]{}+\infty,$ on en déduit que le produit (p_n) diverge.

3. Montrons par récurrence sur n que :

$$\forall n \in \mathbb{N}^* \quad p_n \sin \frac{a}{2^n} = \frac{1}{2^n} \sin a$$

En effet, en posant:

$$\mathcal{H}_n: \ll p_n \sin \frac{a}{2^n} = \frac{1}{2^n} \sin a \$$

– \mathcal{H}_1 est vraie. En effet :

$$p_1 \sin \frac{a}{2} = \cos \frac{a}{2} \sin \frac{a}{2} = \frac{1}{2} \sin a$$

 $-\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. En effet, soit $n \geqslant 1$. On suppose que \mathcal{H}_n est vraie. Montrons que \mathcal{H}_{n+1} est vraie.

$$p_{n+1} \sin \frac{a}{2^{n+1}} = \sin \frac{a}{2^{n+1}} \prod_{p=1}^{n+1} \cos \frac{a}{2^p}$$

$$= \sin \frac{a}{2^{n+1}} \cos \frac{a}{2^{n+1}} \prod_{p=1}^{n} \cos \frac{a}{2^p}$$

$$= \frac{1}{2} \sin \frac{a}{2^n} \prod_{p=1}^{n} \cos \frac{a}{2^p}$$

$$= \frac{1}{2} p_n \sin \frac{a}{2^n}$$

$$= \frac{1}{2} \frac{1}{2^n} \sin a \quad \text{par hypothèse de récurrence}$$

$$= \frac{1}{2^{n+1}} \sin a$$

Donc \mathcal{H}_{n+1} est vraie.

Par récurrence, on en déduit que \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$, donc :

$$\forall n \in \mathbb{N}^* \quad p_n \sin \frac{a}{2^n} = \frac{1}{2^n} \sin a$$

Puisque a n'est pas un multiple de π , on en déduit que $a/2^n$ n'en est pas un non plus. On en déduit donc que $\sin{(a/2^n)} \neq 0$. Donc :

$$\forall n \geqslant 1 \quad p_n = \frac{\sin a}{2^n \sin \frac{a}{2^n}}$$

Or, puisque $a/2^n \xrightarrow[n \to +\infty]{} 0$ et $\sin x/x \xrightarrow[x \to 0]{} 1$, on a :

$$2^n \sin \frac{a}{2^n} = a \frac{\sin \frac{a}{2^n}}{\frac{a}{2^n}} \xrightarrow[n \to +\infty]{} a$$

En conclusion:

$$p_n \xrightarrow[n \to +\infty]{\sin a}$$

1. (a) Puisque $u_n \xrightarrow[n \to +\infty]{} 1$ et que $1 > \frac{1}{2}$, on en déduit qu'il existe $n_0 \in \mathbb{N}$ tel que :

$$\forall n \geqslant n_0 \quad u_n \geqslant \frac{1}{2}$$

En particulier:

$$\forall n \geqslant n_0 \quad u_n > 0$$

(b) Supposons que la suite (S_n) soit convergente et montrons que le produit (p_n) converge. On a :

$$\forall n \geqslant n_0 \quad p_n = \underbrace{\prod_{p=1}^{n_0 - 1} u_p}_{=A} \prod_{p=n_0}^n u_p$$

Remarquons que $A \neq 0$ puisque, par définition, la suite (u_p) ne s'annule jamais. Or :

$$\forall n \geqslant n_0 \quad \prod_{p=n_0}^n u_p = e^{\ln \prod_{p=n_0}^n u_p} = e^{\sum_{p=n_0}^n \ln u_p} = e^{S_n}$$

Par continuité de l'exponentielle et convergence de la suite (S_n) , on en déduit que la suite (p_n) est convergente et que sa limite est non nulle (c'est le produit de A et de l'exponentielle de la limite de (S_n)).

Réciproquement, supposons que le produit (p_n) soit convergent. Soit $l \in \mathbb{R}^*$ sa limite. Montrons que la suite (S_n) est convergente.

$$\forall n \geqslant n_0 \quad p_n = \underbrace{\prod_{p=1}^{n_0 - 1} u_p}_{=A \neq 0} \prod_{p=n_0}^n u_p$$

Donc:

$$\forall n \geqslant n_0 \quad \prod_{p=n_0}^n u_p = \frac{p_n}{A}$$

Donc, en composant par ln, il vient :

$$\forall n \geqslant n_0 \quad S_n = \ln \frac{p_n}{A}$$

Puisque $l \neq 0$, par continuité de ln en l/A > 0, on en déduit que $S_n \xrightarrow[n \to +\infty]{} \ln \frac{l}{A}$.

En conclusion, (S_n) converge si et seulement si le produit (p_n) est convengent. De plus, dans ce cas :

$$\lim_{n \to +\infty} p_n = \left(\prod_{p=1}^{n_0-1} u_p\right) e^{\lim_{n \to +\infty} S_n}$$

2. (a) Soit φ la fonction définie sur \mathbb{R}_+^* par :

$$\forall x > 0 \quad \varphi\left(x\right) = \frac{\ln x}{x}$$

D'après les théorèmes usuels, φ est dérivable sur \mathbb{R}_+^* et :

$$\forall x > 0 \quad \varphi'(x) = \frac{1 - \ln x}{x^2}$$

Donc:

$$\forall x > 0 \quad \varphi'(x) \leqslant 0 \iff 1 - \ln x \leqslant 0$$

$$\iff \ln x \geqslant 1$$

$$\iff x \geqslant e$$

On en déduit que φ est décroissante sur $[e, +\infty[$.

Soit $p \geqslant 3$. Comme $e \leqslant 3$, φ est décroissante sur [p,p+1]. On en déduit donc que :

$$\forall x \in [p, p+1] \quad \frac{\ln x}{x} \leqslant \frac{\ln p}{p}$$

Donc, par intégration:

$$\int_{p}^{p+1} \frac{\ln x}{x} \, \mathrm{d}x \leqslant \int_{p}^{p+1} \frac{\ln p}{p} \, \mathrm{d}x = \frac{\ln p}{p}$$

En conclusion:

$$\forall p \geqslant 3$$
 $\int_{p}^{p+1} \frac{\ln x}{x} \, \mathrm{d}x \leqslant \frac{\ln p}{p}$

(b) D'après la question précédente :

$$\forall n \geqslant 3 \quad S_n = \frac{\ln 2}{2} + \sum_{p=3}^n \frac{\ln p}{p}$$

$$\geqslant \frac{\ln 2}{2} + \sum_{p=3}^n \int_p^{p+1} \frac{\ln x}{x} dx$$

$$\geqslant \frac{\ln 2}{2} + \int_3^{n+1} \frac{\ln x}{x} dx$$

$$\geqslant \frac{\ln 2}{2} + \left[\frac{1}{2} \ln^2 x\right]_3^{n+1}$$

$$\geqslant \frac{\ln 2}{2} - \frac{1}{2} \ln^2 3 + \frac{1}{2} \ln^2 (n+1) \xrightarrow[n \to +\infty]{} +\infty$$

On en déduit donc, que la suite (S_n) diverge. Comme les hypothèses de la question 1 sont donc réunies $(\sqrt[p]{p} = \exp((\ln p)/p) \xrightarrow[p \to +\infty]{} 1)$, on en déduit que le produit (p_n) diverge.

La suite
$$(S_n)$$
 et le produit (p_n) sont divergents.

1. (a) Soit φ la fonction définie sur \mathbb{R}_+ par :

$$\forall x \geqslant 0 \quad \varphi(x) = x - \ln(1+x)$$

D'après les théorèmes usuels, φ est dérivable sur \mathbb{R}_+ et :

$$\forall x \geqslant 0 \quad \varphi'(x) = 1 - \frac{1}{1+x}$$

En particulier, pour tout $x \ge 0$, $\varphi'(x) \ge 0$ et $\varphi'(x)$ ne s'annule qu'en 0, donc φ est strictement croissante sur \mathbb{R}_+ . Puisque $\varphi(0) = 0$, on en déduit :

$$\forall x > 0 \quad \varphi(x) > 0$$

Autrement dit:

$$\forall x > 0 \quad \ln\left(1 + x\right) < x$$

(b) Soit $n \ge 1$. Alors:

$$S'_{n+1} - S'_n = v_{n+1} \geqslant 0$$

Donc:

La suite
$$(S'_n)$$
 est croissante.

(c) On suppose que la suite (S'_n) converge. Montrons qu'il en est de même du produit (p_n) . La suite (p_n) est une suite de termes strictement positifs telle que $p_{n+1}/p_n = 1 + v_{n+1} \geqslant 1$ pour tout $n \in \mathbb{N}^*$. On en déduit que cette suite est croissante. Montrons qu'elle est majorée. Puisque (S'_n) est croissante, elle est majorée. Il existe donc $M \in \mathbb{R}$ tel que $S'_n \leqslant M$ pour tout $n \in \mathbb{N}$. En utilisant la question 1.a, il vient :

$$\forall n \in \mathbb{N}^* \quad \ln p_n = \sum_{p=1}^n \ln (1 + v_p) \leqslant \sum_{p=1}^n v_p \leqslant M$$

Donc:

$$\forall n \in \mathbb{N}^* \quad p_n \leqslant e^M$$

On en déduit que (p_n) est croissante majorée, donc converge. De plus puisque $p_n \geqslant 1$ pour tout $n \in \mathbb{N}^*$, cette limite est non nulle.

Si la suite
$$(S'_n)$$
 converge, alors le produit (p_n) converge.

2. La suite (S'_n) est croissante, donc soit elle est majorée soit elle diverge vers $+\infty$. Supposons qu'elle soit majorée. Alors elle est convergente. D'après la question précédente, on en déduit que le produit

$$\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right)$$

est convergent, ce qui est absurde d'après la question 2 de la première partie. En conclusion :

La suite
$$\sum_{p=1}^{n} \frac{1}{p}$$
 diverge.

3. (a) On suppose $a \ge 1$. Alors

$$\forall p \geqslant 1 \quad 1 + a^{2^p} \geqslant 2$$

donc la suite $(1+a^{2^p})$ ne converge pas vers 1. D'après la question 1 de la première partie, on en déduit que :

Lorsque
$$a \ge 1$$
, le produit (p_n) est divergent.

(b) i. Puisque $a \in]0,1[$, on en déduit que $a^n \xrightarrow[n \to +\infty]{} 0$, donc que $1+a^{2^p} \xrightarrow[p \to +\infty]{} 1$. Nous sommes donc dans le cas de la question 1 et il suffit de montrer que la suite $\sum_{p=1}^n a^{2^p}$ est convergente. Or cette suite est croissante. Comme de plus $2^p \geqslant p$, donc $a^{2^p} \leqslant a^p$, on en déduit que :

$$\forall p\geqslant 1\quad \sum_{p=1}^n a^{2^p}\leqslant \sum_{p=1}^n a^p\leqslant \frac{1-a^{n+1}}{1-a}\leqslant \frac{1}{1-a}$$

ii. Montrons par récurrence sur n que :

$$\forall n \geqslant 1 \quad (1 - a^2) p_n = 1 - a^{2^{n+1}}$$

On pose donc:

$$\mathcal{H}_n$$
: « $(1-a^2) p_n = 1 - a^{2^{n+1}}$ »

– \mathcal{H}_1 est vraie. En effet :

$$(1-a^2) p_1 = (1-a^2) (1+a^2) = 1-a^4 = 1-a^{2^{1+1}}$$

 $-\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. Soit $n \geqslant 1$. On suppose que \mathcal{H}_n est vraie et on souhaite montrer que \mathcal{H}_{n+1} est vraie. En effet :

$$(1 - a^{2}) p_{n+1} = (1 - a^{2}) p_{n} (1 + a^{2^{n+1}})$$

$$= (1 - a^{2^{n+1}}) (1 + a^{2^{n+1}}) \quad (d'après \mathcal{H}_{n})$$

$$= 1 - a^{2^{(n+1)+1}}$$

Donc \mathcal{H}_{n+1} est vraie.

Par récurrence sur n on en déduit que \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$. Donc :

$$\forall n \in \mathbb{N}^* \quad (1 - a^2) \ p_n = 1 - a^{2^{n+1}}$$

En particulier $p_n \xrightarrow[n \to +\infty]{} \frac{1}{1 - a^2}$.

Fin problème 1