Correction

Partie I

1. Par récurrence double sur $n \in \mathbb{N}$.

Pour $n = 0, u_0 = 0 \ge -1$, pour $n = 1, u_1 = 1 \ge 0$, pour $n = 2, u_2 = 1 \ge 1$ et pour $n = 3, u_3 = 2 \ge 2$.

Supposons la propriété établie au rang $n \ge 2$ et n+1:

$$u_{n+2} = u_{n+1} + u_n \underset{{\rm HP}}{\geq} n + (n-1) = 2n - 1 = n + (n-1) \geq n + 1 \ \ {\rm puisque} \ \ n \geq 2 \ .$$

Récurrence établie. Clairement $u_n \to +\infty$.

2.a Par récurrence simple sur $n \in \mathbb{N}^*$.

Pour
$$n = 1, u_2 u_0 - u_1^2 = -1$$
: ok

Supposons la propriété établie au rang $n \ge 1$.

$$u_{n+2}u_n - u_{n+1}^2 = (u_{n+1} + u_n)u_n - u_{n+1}(u_n + u_{n-1}) = u_n^2 - u_{n+1}u_{n-1} = (-1)^n = (-1)^{n+1}$$

Récurrence établie

2.b Pour $U = (-1)^n u_{n+1}$ et $V = (-1)^{n+1} u_n$ on a:

 $u_{{\scriptscriptstyle n}\!-\!1}U+u_{{\scriptscriptstyle n}}V=1\,$ et par cette égalité de Bézout : $u_{{\scriptscriptstyle n}\!-\!1}\wedge u_{{\scriptscriptstyle n}}=1$.

3.a Par récurrence sur $n \in \mathbb{N}$.

Pour n = 0 on a $\forall p \in \mathbb{N}^*, u_n = u_0.u_{n-1} + u_1u_n$ car $u_0 = 0$ et $u_1 = 1$.

Supposons la propriété établie au rang $n \ge 0$.

$$\forall p \in \mathbb{N}^*, u_{n+1+p} = u_{n+(p+1)} = u_n u_p + u_{n+1} u_{p+1}$$
 donc

$$u_{n+1+p} - (u_{n+1}u_{p-1} + u_{n+2}u_p) = (u_n - u_{n+2})u_p + u_{n+1}(u_{p+1} - u_{p-1}) = -u_{n+1}u_p + u_{n+1}u_p = 0$$

Récurrence établie.

3.b Posons $d = \operatorname{pgcd}(u_{n+n}, u_n)$ et $\delta = \operatorname{pgcd}(u_n, u_n)$.

On a
$$\,\delta\,|\,u_{\!{}_n}\,$$
 et $\,\delta\,|\,u_{\!{}_p}\,$ donc $\,\delta\,|\,u_{\!{}_{n+p}}=u_{\!{}_n}u_{\!{}_{p-1}}+u_{\!{}_{n+1}}u_{\!{}_p}\,.$

Ainsi $\delta \mid u_p$ et $\delta \mid u_{n+p}$ donc $\delta \mid d$.

Inversement, on a $d \mid u_{\scriptscriptstyle p}$ et $d \mid u_{\scriptscriptstyle n+p}$ donc $d \mid u_{\scriptscriptstyle n} u_{\scriptscriptstyle p-1} = u_{\scriptscriptstyle n+p} - u_{\scriptscriptstyle n+1} u_{\scriptscriptstyle p}$.

Or
$$d \mid u_p$$
 et $u_p \wedge u_{p-1} = 1$ donc $d \wedge u_{p-1} = 1$.

Puisque $d \mid u_n u_{n-1}$ et $d \wedge u_{n-1} = 1$ on a $d \mid u_n$.

Ainsi $d \mid u_n$ et $d \mid u_n$ donc $d \mid \delta$.

Par double divisibilité : $d = \delta$.

3.c $\operatorname{pgcd}(u_{n+2p}, u_p) = \operatorname{pgcd}(u_{(n+p)+p}, u_p) = \operatorname{pgcd}(u_{n+p}, u_p) = \operatorname{pgcd}(u_n, u_p)$

Par récurrence, on obtient que $\forall q \in \mathbb{N}, \operatorname{pgcd}(u_{n+m}, u_n) = \operatorname{pgcd}(u_n, u_n)$.

Ainsi, si r est le reste de la division euclidienne d'un entier $a\in\mathbb{N}$ par un entier $b\in\mathbb{N}^*$ on a :

$$\operatorname{pgcd}(u_a,u_b)=\operatorname{pgcd}(u_b,u_r) \ \ (\text{en prenant} \ \ n=r \ , \ b=p \ \ \text{et} \ \ a=qb+r \ \ ; \ \text{sachant} \ \ q\in \mathbb{N} \).$$

3.d Suivons l'algorithme d'Euclide calculant $n \wedge p$:

On pose $a_0=n$, $a_1=p$, puis on réalise les divisions euclidiennes suivantes tant que les restes obtenus sont non nuls :

$$a_0 = a_1q_1 + a_2$$
, $a_1 = a_2q_2 + a_3$,..., $a_{m-2} = a_{m-1}q_{m-1} + a_m$ puis $a_{m-1} = a_mq_m + 0$ avec $a_m = \operatorname{pgcd}(n,p)$.

Or, de part 3.c, on obtient

$$\operatorname{pgcd}(u_{n}, u_{p}) = \operatorname{pgcd}(u_{a_{0}}, u_{a_{1}}) = \operatorname{pgcd}(u_{a_{1}}, u_{a_{2}}) = \dots = \operatorname{pgcd}(u_{a_{m}}, u_{0}) = \operatorname{pgcd}(u_{a_{m}}, 0) = u_{a_{m}},$$

d'où le résultat voulu.

Partie II

1. $E \subset \mathbb{R}^{\mathbb{N}}$.

La suite nulle (0) vérifie la relation de récurrence et appartient donc à E.

Soit $\alpha, \beta \in \mathbb{R}$ et $(a_n), (b_n) \in E$.

$$\alpha.(a_n) + \beta.(b_n) = (\alpha a_n + \beta b_n)$$
 et

$$\forall n \in , \alpha a_{n+2} + \beta b_{n+2} = \alpha (a_{n+1} + a_n) + \beta (b_{n+1} + b_n) = (\alpha a_{n+1} + \beta b_{n+1}) + (\alpha a_n + \beta b_n)$$

donc $\alpha.(a_n) + \beta.(b_n) \in E$.

Ainsi E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

2. Soit $\alpha, \beta \in \mathbb{R}$ et $(a_n), (b_n) \in E$.

$$\varphi(\alpha.(a_n) + \beta.(b_n)) = (\alpha a_0 + \beta b_0, \alpha a_1 + \beta b_1) = \alpha \varphi((a_n)) + \beta \varphi((b_n))$$

donc φ est une application linéaire.

Soit $(a_n) \in \ker \varphi$.

On a $a_0 = 0$ et $a_1 = 0$.

Par récurrence double, on montre $\forall n \in \mathbb{N}, a_n = 0$ puisque $a_{n+2} = a_{n+1} + a_n$.

Ainsi $\ker \varphi = \{(0)\}$ et donc φ est injective.

Soit $(x,y) \in \mathbb{R}^2$.

Pour (a_n) définie par $a_0=x$, $a_1=y$ et $\forall n\in\mathbb{N}, a_{n+2}=a_{n+1}+a_n$, la suite (a_n) est bien définie, elle est élément de E et on a $\varphi((a_n))=(x,y)$. Ainsi φ est surjective.

Finalement φ est bijective et c'est donc un isomorphisme de R - espace vectoriel .

Il en découle $\dim E = \dim \mathbb{R}^2 = 2$.

3.a $(q^n) \in E \Leftrightarrow \forall n \in \mathbb{N}, q^{n+2} = q^{n+1} + q^n \Leftrightarrow q^2 = q + 1$

Les solutions de cette dernière équation sont $q_1 = \frac{1+\sqrt{5}}{2}$ et $q_2 = \frac{1-\sqrt{5}}{2}$.

3.b Les suites (q_1^n) et (q_2^n) sont éléments de E.

Montrons qu'elles forment une famille libre.

Supposons $\alpha(q_1^n) + \beta(q_2^n) = (0)$ i.e. $\forall n \in \mathbb{N}, \alpha q_1^n + \beta q_2^n = 0$.

Pour n=0, on obtient $\alpha+\beta=0$ d'où $\beta=-\alpha$

Pour n=1, on obtient $\alpha q_1 + \beta q_2 = 0$ ce qui donne $\alpha(q_1 - q_2) = 0$.

Puisque $q_1 \neq q_2$, on conclut $\alpha = 0$ puis $\beta = 0$.

La famille $((q_1^n), (q_2^n))$ est une famille libre formée de $2 = \dim E$ éléments de E, c'est donc une base de E

3.c Puisque $(u_n) \in E : \exists ! (\alpha, \beta) \in \mathbb{R}^2, (u_n) = \alpha.(q_1^n) + \beta.(q_2^n)$ i.e. $\forall n \in \mathbb{N}, u_n = \alpha.q_1^n + \beta.q_2^n$.

Pour n=0, on obtient $\alpha+\beta=0$ d'où $\beta=-\alpha$.

Pour n=1, on obtient $\alpha q_1 + \beta q_2 = 1$ d'où $\alpha = \frac{1}{q_1 - q_2} = \frac{1}{\sqrt{5}}$.

Ainsi $\forall n \in \mathbb{N}, u_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$.