Petites Mines 1996

PROBLÈME

Soit (u_n) une suite de réels non nuls, on lui associe la suite (p_n) définie par :

$$\forall n \in \mathbb{N}^* \quad p_n = \prod_{p=1}^n u_p = u_1 u_2 \cdots u_n$$

On dit que le produit (p_n) converge si et seulement si la suite (p_n) admet une limite finie non nulle. Sinon, on dit que le produit (p_n) diverge.

Première partie

- 1. En considérant le quotient p_{n+1}/p_n montrer que, pour que le produit (p_n) converge, il est nécessaire que la suite (u_n) converge vers 1.
- 2. Soit

$$p_n = \prod_{p=1}^n \left(1 + \frac{1}{p}\right)$$

Montrer que

$$\forall n \geqslant 1 \quad p_n = n + 1$$

Quelle est la nature du produit (p_n) ?

3. Soient un réel a différent de $k\pi$ $(k \in \mathbb{Z})$ et

$$p_n = \prod_{p=1}^n \cos \frac{a}{2^p}$$

Pour tout entier naturel n non nul, calculer $p_n \sin(a/2^n)$ en déduire que le produit (p_n) converge et donner la limite de la suite (p_n) .

Deuxième partie

- 1. Soit (p_n) un produit associé à une suite (u_n) qui converge vers 1.
 - (a) Montrer qu'il existe un entier n_0 tel que :

$$\forall n \geqslant n_0 \quad u_n > 0$$

(b) On pose

$$S_n = \sum_{p=n_0}^n \ln u_p$$

Montrer que la convergence de la suite (S_n) équivaut à la convergence du produit (p_n) . Lorsque (S_n) converge vers l donner la limite de la suite (p_n) en fonction de l.

2. Soit
$$p_n = \prod_{p=1}^n \sqrt[p]{p}$$
 et $S_n = \sum_{p=1}^n \frac{\ln p}{p}$

(a) Montrer que
$$\forall p \geqslant 3$$
 $\int_{p}^{p+1} \frac{\ln x}{x} dx \leqslant \frac{\ln p}{p}$

(b) En déduire la nature de la suite (S_n) et du produit (p_n) .

Troisième partie

1. Soit
$$p_n = \prod_{p=1}^n (1 + v_p)$$

où (v_n) est une suite de réels strictement positifs qui converge vers 0. On pose

$$S_n' = \sum_{p=1}^n v_p$$

(a) Montrer que

$$\forall x \in \mathbb{R}_+^* \quad \ln(1+x) < x$$

- (b) Montrer que la suite (S'_n) est croissante.
- (c) Montrer que si la suite (S'_n) converge, alors le produit (p_n) converge.
- 2. Déduire de la question 2 (de la partie I) la limite de la suite (S'_n) définie par

$$S_n' = \sum_{p=1}^n \frac{1}{p}$$

3. Soit

$$p_n = \prod_{p=1}^n \left(1 + a^{2^p}\right)$$

où $a \in \mathbb{R}_+^*$.

- (a) Que dire de la nature du produit (p_n) lorsque $a \ge 1$?
- (b) On suppose $a \in [0, 1]$
 - i. Montrer que le produit (p_n) converge.
 - ii. Pour tout entier naturel n non nul, calculer $(1 a^2) p_n$ et en déduire la limite de la suite (p_n) .