Phénomènes de seuil dans les graphes

Partie I - Quelques propriétés algébriques des matrices d'adjacence

1 ▷ On note m l'endomorphisme canoniquement à M et $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n de sorte que $\mathrm{Mat}_{\mathcal{B}}(m) = \mathrm{M}$. On note $\mathcal{B}' = (e_{\rho(1)}, \dots, e_{\rho(n)})$ de sorte que \mathcal{B}' est une base de \mathbb{R}^n et $\mathrm{Mat}_{\mathcal{B}'}(m) = (m_{\rho(i), \rho(j)})_{1 \leq i, j \leq n}$.

Ainsi les matrices M et $(m_{\rho(i),\rho(j)})_{1\leqslant i,j\leqslant n}$ sont semblables car elles représentent m dans deux bases de \mathbb{R}^n .

On note $M_{G,\sigma} = N = (n_{i,j})_{1 \leq i,j \leq n}$ et $\rho = (\sigma')^{-1} \circ \sigma$ de sorte que $\rho \in \mathcal{S}_n$ et $\sigma' \circ \rho = \sigma$.

Ainsi pour tout $1 \le i, j \le n$, on a :

$$n_{i,j} = 1 \Longleftrightarrow {\sigma(i), \sigma(j)} \in A \Longleftrightarrow {\sigma'(\rho(i)), \sigma'(\rho(j))} \in A$$

D'où $\mathcal{M}_{\mathcal{G},\sigma'} = \left(n_{\rho(i),\rho(j)}\right)_{1\leqslant i,j\leqslant n}$, ainsi que $\boxed{\mathcal{M}_{\mathcal{G},\sigma} \text{ et } \mathcal{M}_{\mathcal{G},\sigma'} \text{ sont semblables}}$ avec ce qui précède.

2 ▷ Comme pour tout pour tout $1 \le i, j \le n$, on a $\{i, j\} \in A \iff \{j, i\} \in A$.

Donc une matrice d'adjacence d'un graphe non vide est symétrique réelle.

D'où une matrice d'adjacence d'un graphe non vide est diagonalisable selon le théorème spectral.

3 ⊳ Par l'absurde on considère $M_{G,\sigma} = M = (m_{i,j})_{1 \le i,j \le n}$ une matrice d'adjacence d'un graphe non vide de rang 1.

On écrit $M = (C_1 \mid \cdots \mid C_n)$ en colonnes.

Comme M est de rang 1 cela nous fournit $i_0 \in [1, n]$ tel que $C_{i_0} \neq 0$ et $Vect(C_1 \mid \cdots \mid C_n) = Vect(C_{i_0})$.

Cela nous fournit $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tel que $\forall i \in [1, n], C_i = \lambda_i C_{i_0}$.

On remarque que C_{i_0} a un coefficient non nul qui vaut donc 1 ainsi pour $i \in [1, n]$, λ_i est un coefficient de M.

Donc $\forall i \in [1, n], \ \lambda_i \in \{0, 1\}.$

Quitte à ré-indexer les sommets, ce qui ne change pas le rang de la matrice d'adjacence selon Q2 car le rang est un invariant de similitude, on suppose que $i_0 = 1$ et que les p premières colonnes sont non nulles $(p \in [1, n])$.

de sorte que
$$C_1 = \cdots = C_p$$
 et $C_{p+1} = \cdots = C_n = 0$

Comme les coefficients diagonaux sont nulles les p premiers coefficients de C_1 sont nuls.

Ainsi $\mathbf{M} = \begin{pmatrix} 0_{p,p} & 0_{p,n-p} \\ \mathbf{A} & 0_{n-p,n-p} \end{pmatrix}$ matrice par blocs où $\mathbf{A} \in \mathcal{M}_{n-p,p}(\mathbb{R})$ et $0_{q,r}$ est la matrice nulle de $\mathcal{M}_{q,r}(\mathbb{R})$.

Comme la matrice $M^{\top} = M$, on a $A = 0_{n-p,p}$ ainsi M est nulle.

D'où 0 = 1 ce qui est absurde.

Ainsi une matrice d'adjacence d'un graphe non vide n'est jamais de rang 1

 $\mathbf{4}$ ▷ La réindexation des sommets ne change pas le rangs. On suppose alors que le sommet d'indice 1 est un centre de l'étoile, que les d sommets suivants sont reliés à ce centre et enfin que les r = n - (d+1) sommets restants sont isolés.

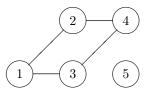
La matrice est alors
$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{0}_{d+1,r} \\ \mathbf{0}_{r,d+1} & \mathbf{0}_{r,r} \end{pmatrix}$$
 où $\mathbf{A} = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{M}_{d+1}(\mathbb{R})$. Alors

$$rg(M) = rg(A) = rg\left(\begin{pmatrix} 0\\1\\\vdots\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}\right) = 2$$

On a bien montré que

une matrice d'adjacence d'un graphe dont les sommets non isolés forment un graphe de type étoile est de rang 2

On représente un exemple de graphe dont la matrice d'adjacence est de rang 2 et qui n'est pas du type précédent :



GRAPHE DONT LA MATRICE D'ADJACENCE EST DE RANG 2 ET QUI N'EST PAS DU TYPE PRÉCÉDENT

En effet la matrice d'adjacence $\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ est bien de rang 2 et les sommets non isolés ne forment pas une étoile}$

car aucun sommet non isolé n'est relié à tous les autres non isolés (le sommet « 5 » est inutile).

5 \triangleright On note G = (S, A) et G' = (S', A') et d = |S| = |S'|.

Si d=0, alors $1=\chi_{G}=\chi_{G'}$. On suppose désormais que $d\in\mathbb{N}^*$.

On considère $\rho: S' \mapsto S$ la bijection qui fait de G' une copie de G.

Soit $\sigma : [1, d] \mapsto S$ une indexation du graphe G.

Alors $\sigma' = \rho^{-1} \circ \sigma : [1, d] \mapsto S'$ est une indexation du graphe G'.

On pose la matrice d'adjacence $M = M_{G,\sigma}$. Par définition d'une copie de graphe, on a $M = M_{G',\sigma'}$.

On obtient $\chi_{G} = \chi_{M} = \chi_{G'}$ (valable dans les deux cas)

6 ▷ On note $M = (m_{i,j})_{1 \le i,j \le n}$ une matrice d'adjacence du graphe G. On a $\forall i \in [1, n]$, $m_{i,i} = 0$ (pas de boucle dans le graphe). Selon le cours, on a donc :

$$a_{n-1} = -\operatorname{tr}(\mathbf{M}) = -\sum_{i=1}^{n} m_{i,i} = -0$$

Par ailleurs, on a (en notant δ le symbole de Kronecker et ε la signature):

$$\chi_{G}(X) = \chi_{M}(X) = \det(XI_{n} - M) = \sum_{\sigma \in \mathcal{S}_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} (\delta_{i,\sigma(i)}X - m_{i,\sigma(i)})$$

Soit $\sigma \in \mathcal{S}_n$.

- Si σ admet n points fixes alors $\sigma = \operatorname{Id}_{\llbracket 1,n \rrbracket}$ et $\varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)} X m_{i,\sigma(i)} \right) = 1 \cdot \prod_{i=1}^{n} \left(X 0 \right) = X^{n}$.
- La permutation σ ne peut pas admettre exactement n-1 points fixes.
- Si σ admet exactement n-2 points fixes alors σ est une transposition que l'on note $\sigma=(k\,\ell)$ (où $k\neq\ell$ dans [1,n]).

On a alors : $\varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)} \mathbf{X} - m_{i,\sigma(i)} \right) = (-1) \mathbf{X}^{n-2} (0 - m_{k,\ell}) (0 - m_{\ell,k}) = -m_{k,\ell} m_{\ell,k} \mathbf{X}^{n-2}.$ Ainsi $\varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)} \mathbf{X} - m_{i,\sigma(i)} \right) = \begin{cases} -\mathbf{X}^{n-2} & \text{si } \{k,\ell\} \in \mathbf{A} \\ 0 & \text{sinon} \end{cases}.$

Ainsi
$$\varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)} \mathbf{X} - m_{i,\sigma(i)} \right) = \begin{cases} -\mathbf{X}^{n-2} & \text{si } \{k,\ell\} \in \mathbf{A} \\ 0 & \text{sinon} \end{cases}$$

- Si σ admet moins de n-3 points fixes, alors deg $\left(\varepsilon(\sigma)\prod_{i=1}^{n}\left(\delta_{i,\sigma(i)}\mathbf{X}-m_{i,\sigma(i)}\right)\right)\leqslant n-3$.

• • On a alors $\chi_{G}(X) = X^{n} + \sum_{\sigma \text{ transposition de } S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)}X - m_{i,\sigma(i)}\right) + R(X) \text{ avec deg}(R(X)) \leqslant n - 3.$ Ainsi a_{n-2} est le coefficient dominant (de degré n-2) de $\sum_{\sigma \text{ transposition de } S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n} \left(\delta_{i,\sigma(i)}X - m_{i,\sigma(i)}\right).$

donc $a_{n-2} = -|A|$ et $a_{n-1} = 0$

7 ▷ Soit M une matrice d'adjacence d'un graphe à n sommets dont les sommets non isolés forment une étoile à d branches avec $1 \le d \le n-1$.

Alors rg(M) = 2 selon 4. Puis $dim(E_0(M)) = dim(Ker(M)) = n - 2$.

Ainsi 0 est racine de multiplicité au moins n-2 de $\chi_{\rm M}=\chi_{\rm G}$..

Ainsi $\chi_G = X^n + a_{n-1}X^{n-1} + a_{n-2}X^{n-2}$ or l'étoile admet exactement d arêtes.

D'où en utilisant 6,
$$\boxed{\chi_{\rm G} = {\bf X}^n - d{\bf X}^{n-2} = {\bf X}^{n-2}({\bf X} - \sqrt{d})({\bf X} + \sqrt{d})} \text{ et } \boxed{{\rm Sp}({\bf M}) = \{0, \sqrt{d}, -\sqrt{d}\}}$$

On choisit un indexation comme en Q4, de sorte que : $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{0}_{d+1,r} \\ \mathbf{0}_{r,d+1} & \mathbf{0}_{r,r} \end{pmatrix}$ où $\mathbf{A} = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix} \in \mathcal{M}_{d+1}(\mathbb{R}).$

On note alors (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n .

La famille $(e_3 - e_2, e_4 - e_2, \dots, e_d - e_2, e_{d+1}, \dots, e_n)$ est une famille libre de n-2 vecteurs de $E_0(M) = Ker(M)$ qui est de dimension n-2 ainsi il s'agit d'une base de $E_0(M)$.

On sait que $E_{\sqrt{d}}(M)$ et $E_{-\sqrt{d}}(M)$ sont des droites car les multiplicités de \sqrt{d} et de $-\sqrt{d}$ valent 1.

$$\text{Je note} \begin{bmatrix} \varepsilon = \begin{pmatrix} \sqrt{d} \\ 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ et } \varepsilon' = \begin{pmatrix} -\sqrt{d} \\ 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^n \text{ et avec } d \text{ occurrences de } 1 \text{ et } n-(d+1) \text{ occurrences de } 0 \end{bmatrix}$$

On a
$$M\varepsilon = \begin{pmatrix} d \cdot 1 \\ \sqrt{d} \\ \vdots \\ \sqrt{d} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \sqrt{d}\varepsilon \text{ et } M\varepsilon' = \begin{pmatrix} -d \cdot 1 \\ -\sqrt{d} \\ \vdots \\ -\sqrt{d} \\ 0 \\ \vdots \\ 0 \end{pmatrix} = -\sqrt{d}\varepsilon'.$$

$$Ainsi \left[E_0(M) = Vect\left(e_3 - e_2, e_4 - e_2, \dots, e_d - e_2, e_{d+1}, \dots, e_n\right); E_{\sqrt{d}}(M) = Vect(\varepsilon) \text{ et } E_{-\sqrt{d}}(M) = Vect(\varepsilon') \right]$$

8 \triangleright On note $n_1 = |S_1|$ et $n_2 = |S_2|$. Alors $n = n_1 + n_2 = |S|$ car S_1 et S_2 sont disjoints.

On indexe les sommets de S_1 en commençant par s_1 et de même pour S_2 et s_2 .

On indexe ensuite les sommets de S en commençant par ceux de S_1 puis ceux de S_2 en gardant l'ordre ci-dessus.

On note respectivement M_1 , M_2 , et M les matrices d'adjacence des graphes G_1 , G_2 et G.

En notant $U=(u_{i,j})\in \mathcal{M}_{n_2,n_1}(\mathbb{R})$ telle que $u_{1,1}=1$ dont tous les coefficients sont nuls, M est alors donnée par blocs :

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_1 & \mathbf{U} \\ \mathbf{U}^\mathsf{T} & \mathbf{M}_2 \end{pmatrix}$$

Pour $i \in \{1,2\}$, en notant N_i la matrice d'adjacence de $G_i \setminus s_i$ en gardant l'ordre d'indexation des sommets, on a

$$\mathbf{M}_i = \begin{pmatrix} 0 & \mathbf{L}_i \\ \mathbf{L}_i^\top & \mathbf{N}_1 \end{pmatrix} \text{ avec } \mathbf{L}_i \in \mathcal{M}_{1,n_i-1}(\mathbb{R})$$

On note en plus $L = (10 \cdots 0)$ la première ligne de la matrice U

On a alors

$$\chi_{G} = \chi_{M}(X) = \begin{vmatrix} XI_{n_{1}} - M_{1} & -U \\ -U^{\top} & XI_{n_{2}} - M_{2} \end{vmatrix} = \begin{vmatrix} X & -L_{1} & -L \\ -L_{1}^{\top} & XI_{n_{1}-1} - N_{1} & 0_{n_{1}-1,n_{2}} \\ -L^{\top} & 0_{n_{2},n_{1}-1} & XI_{n_{2}} - M_{2} \end{vmatrix}$$

En utilisant la linéarité par rapport à la première ligne, on a

$$\chi_{\mathbf{G}} = \begin{vmatrix} \mathbf{X} \mathbf{I}_{n_1} - \mathbf{M}_1 & \mathbf{0}_{n_1, n_2} \\ -\mathbf{U}^\top & \mathbf{X} \mathbf{I}_{n_2} - \mathbf{M}_2 \end{vmatrix} + \begin{vmatrix} \mathbf{0} & \mathbf{0}_{1, n_1 - 1} & -\mathbf{L} \\ -\mathbf{L}_1^\top & \mathbf{X} \mathbf{I}_{n_1 - 1} - \mathbf{N}_1 & \mathbf{0}_{n_1 - 1, n_2} \\ -\mathbf{L}^\top & \mathbf{0}_{n_2, n_1 - 1} & \mathbf{X} \mathbf{I}_{n_2} - \mathbf{M}_2 \end{vmatrix}$$

Par déterminant d'une matrice triangulaire par blocs, on a :

$$\begin{vmatrix} XI_{n_1} - M_1 & 0_{n_1, n_2} \\ -U^{\mathsf{T}} & XI_{n_2} - M_2 \end{vmatrix} = \det(XI_{n_1} - M_1) \times \det(XI_{n_2} - M_2) = \chi_{G_1} \times \chi_{G_2}$$

En notant Δ , le deuxième terme, on a $\chi_G = \chi_{G_1} \times \chi_{G_2} + \Delta$. Puis en effectuant un développement par rapport à la première ligne et en reconnaissant une matrice triangulaire par blocs, on a :

$$\Delta = -(-1)^{1+n_1+1} \begin{vmatrix} -\mathbf{L_1}^\top & \mathbf{XI_{n_1-1}} - \mathbf{N_1} & \mathbf{0_{n_1-1,n_2-1}} \\ -1 & \mathbf{0_{1,n_1-1}} & -\mathbf{L_2} \\ \mathbf{0_{n_2-1,1}} & \mathbf{0_{n_2-1,n_1-1}} & \mathbf{XI_{n_2-1}} - \mathbf{N_2} \end{vmatrix} = (-1)^{n_1+1} \begin{vmatrix} -\mathbf{L_1}^\top & \mathbf{XI_{n_1-1}} - \mathbf{N_1} \\ -1 & \mathbf{0_{1,n_1-1}} \end{vmatrix} \times \det\left(\mathbf{XI_{n_2-1}} - \mathbf{N_2}\right)$$

Par développement par rapport à la dernière ligne, on a

$$\Delta = (-1)^{n_1+1}(-1)(-1)^{n_1+1}\det\left(XI_{n_1-1} - N_1\right) \times \chi_{G_2 \setminus s_2} = -\chi_{G_1 \setminus s_1} \times \chi_{G_2 \setminus s_2}$$

On peut alors conclure que $\chi_G = \chi_{G_1} \times \chi_{G_2} - \chi_{G_1 \setminus s_1} \times \chi_{G_2 \setminus s_2}$

 $\mathbf{9} \, \triangleright \,$ Pour $i \in \{1,2\},$ je note $\mathbf{G}_i,$ l'étoile de centre s_i à d_i branches.

On a $\chi_{G_i} = X^{d_i+1} - d_i X^{d_i-1}$ selon 7 car G_i est une étoile à d_i branches ayant $d_i + 1$ sommets.

Par ailleurs, le graphe $G_i \setminus s_i$ possède d_i sommets et n'a pas d'arêtes. Sa matrice d'adjacence est alors la matrice nulle de $\mathcal{M}_{d_i}(\mathbb{R})$

d'où $\chi_{\mathcal{G}_1 \backslash s_1} = \mathcal{X}^{d_i}$

Ainsi avec 8, en notant G la double étoile, on a

$$\chi_{G} = (X^{d_1+1} - d_1 X^{d_1-1}) \times (X^{d_2+1} - d_2 X^{d_2-1}) - X^{d_1} \times X^{d_2}$$

Ainsi le polynôme caractéristique de la double étoile à $d_1 + d_2 + 2$ sommets, constituée respectivement de deux étoiles disjointes à d_1 et d_2 branches, à qui l'on a ajouté une arête supplémentaire reliant les deux centres des deux étoiles est :

$$X^{d_1+d_2+2} - (d_1+d_2+1)X^{d_1+d_2} + d_1d_2X^{d_1+d_2-2}$$

En notant M la matrice d'adjacence, M est diagonalisable selon 2

donc la multiplicité de 0 vaut $\dim (E_0(M)) = \dim (Ker(M))$.

Ainsi avec le théorème du rang, on a $rg(M) = d_1 + d_2 + 2 - dim(Ker(M)) = d_1 + d_2 + 2 - (d_1 + d_2 - 2)$.

D'où le rang de la matrice d'adjacence de cette double étoile vaut $d_1 + d_2 + 2 - (d_1 + d_2 - 2) = 4$

 $\mathbf{10} \, \triangleright \,$ Par indépendance des $\mathbf{X}_{\{i,j\}}$ et à l'aide de la remarque de l'énoncé, on a :

$$\mathbb{P}\left(\left\{\mathbf{G}\right\}\right) = \prod_{\{i,j\} \in \mathbf{A}} \mathbb{P}\left(\mathbf{X}_{\{i,j\}} = 1\right) \times \prod_{\{i,j\} \notin \mathbf{A}} \mathbb{P}\left(\mathbf{X}_{\{i,j\}} = 0\right)$$

Comme le graphe G admet a arêtes et $N = \binom{n}{2}$ paires de sommets, on a alors $\boxed{\mathbb{P}\left(\{G\}\right) = p_n^a q_n^{N-a}}$

Je note pour G = (S, A) $\in \Omega_n$, a(G) = |A|. Ainsi $a(G) \in [0, N]$ et $\mathbb{P}(\{G\}) = p_n^{a(G)}q_n^{N-a(G)}$

Réciproquement pour $k \in [0, N]$, il y a $\binom{N}{k}$ graphes possédant exactement k arêtes (on choisit k paires parmi les N

possibles). Ainsi avec l'union disjointe $\Omega_n = \bigcup_{k=0}^n \{G \in \Omega_n \mid a(G) = k\}$ et la formule du binôme, on a :

$$\mathbb{P}(\Omega_n) = \sum_{k=0}^{N} \mathbb{P}(\{G \in \Omega_n \mid a(G) = k\}) = \sum_{k=0}^{N} {N \choose k} p_n^k q_n^{N-k} = (p_n + q_n)^N$$

On retrouve bien le fait que $\mathbb{P}(\Omega_n) = 1$

Partie II - Une première fonction de seuil

Section A - Deux inégalités

11
$$\triangleright$$
 On a l'union disjointe $(X > 0) = \bigcup_{k=1}^{+\infty} (X = k)$ donc $\mathbb{P}(X > 0) = \sum_{k=1}^{+\infty} \mathbb{P}(X = k) \leqslant \sum_{k=1}^{+\infty} k \mathbb{P}(X = k) = \sum_{k=0}^{+\infty} k \mathbb{P}(X = k)$

 $\mathbf{12} \, \triangleright \, \text{On suppose que } \mathbb{E}(X) \neq 0 \, \text{alors } \mathbb{E}(X) > 0 \, \text{ car } X \geqslant 0. \, \text{Comme} \, |0 - \mathbb{E}(X)| = \mathbb{E}(X), \, \text{on a} \, (X = 0) \subset (|X - \mathbb{E}(X)| \geqslant \mathbb{E}(X)).$ Ainsi par l'inégalité Bienaymé-Tchebychev, on a $\left|\,\mathbb{P}(X=0)\leqslant\mathbb{P}\left(|X-\mathbb{E}(X)|\geqslant\mathbb{E}(X)\right)\leqslant\frac{\mathbb{V}(X)}{(\mathbb{E}(X))^2}\right|$

Section B - Une fonction de seuil

13 ▷ On remarque $A_n = \sum_{1 \le i < j \le n} X_{\{i,j\}}$ (on compte les arêtes).

Comme il s'agit de la somme de N variables aléatoires indépendantes suivant une loi de Bernoulli de paramètre p_n , on a alors $A_n \sim \mathcal{B}(N, p_n)$ loi binomiale de paramètre (N, p_n) .

14 \triangleright On suppose que $p_n = o\left(\frac{1}{n^2}\right)$ au voisinage de $+\infty$.

Ainsi A_n est à valeurs dans [0, N] et admet une espérance $\mathbb{E}(A_n) = Np_n$ et une variance, on peut donc utiliser 11.

Quand
$$n \longrightarrow +\infty$$
, on a N $\sim \frac{n^2}{2}$ d'où $\mathbb{E}(\mathbf{A}_n) = \mathrm{N}p_n \sim \frac{n^2p_n}{2} = o(1)$ et donc $\mathbb{E}(\mathbf{A}_n) \longrightarrow 0$. Or

$$0 \leqslant \mathbb{P}(A_n > 0) \leqslant \mathbb{E}(A_n)$$

D'où avec les gendarmes, on a alors $\lim_{n \to +\infty} \mathbb{P}(A_n > 0) = 0$

15 ▷ Quand $n \longrightarrow +\infty$, on suppose que $\frac{1}{n^2} = o(p_n)$. Comme A_n est positive, on a $\mathbb{P}(A_n > 0) = 1 - \mathbb{P}(A_n = 0)$. On peut encore appliquer 12 avec des réels $\geqslant 0$ et comme $0 < q_n < 1$:

$$0 \leqslant \mathbb{P}\left(\mathbf{A}_{n}=0\right) \leqslant \frac{\mathbb{V}(\mathbf{A}_{n})}{\left(\mathbb{E}\left(\mathbf{A}_{n}\right)\right)^{2}} = \frac{\mathbf{N}p_{n}q_{n}}{\left(\mathbf{N}p_{n}\right)^{2}} = \frac{\mathbf{N}q_{n}}{np_{n}} \leqslant \frac{1}{\mathbf{N}p_{n}}$$

On a N
$$\sim \frac{n^2}{2}$$
; donc

$$\frac{1}{\mathrm{N}p_n} \sim \frac{2}{p_n n^2} = 2 \frac{1/n^2}{p_n} \longrightarrow 0$$

ainsi $\mathbb{P}(A_n = 0) \longrightarrow 0$, selon les gendarmes. Alors on a $\lim_{n \to +\infty} \mathbb{P}(A_n > 0) = 1$

16 ▷ L'événement $\{A_n > 0\}$ signifie que le graphe admet au moins une arête.

La propriété \mathcal{P}_n : « le graphe de Ω_n admet au moins une arête » admet $(t_k) = \left(\frac{1}{k^2}\right)_{k \geq 2}$ comme fonction de seuil

Partie III - Fonction de seuil de la copie d'un graphe

 $\begin{array}{c} \textbf{17} \vartriangleright \text{ Comme } S_{H} \subset \llbracket 1, n \rrbracket = S \text{ alors pour } G = (S, A) \in \Omega_{n}, \text{ on a} : \\ X_{H}(G) = 1 \Longleftrightarrow H \subset G \Longleftrightarrow A_{H} \subset A \Longleftrightarrow \forall \{i, j\} \in A_{H}, \ \{i, j\} \in A \Longleftrightarrow \forall \{i, j\} \in A_{H}, \ X_{\{i, j\}}(G) = 1 \end{cases}$ Avec l'indépendance des $X_{\{i,j\}}$, on a :

$$\mathbb{E}(\mathbf{X}_{\mathbf{H}}) = \mathbb{P}\left(\bigcap_{\{i,j\}\in\mathbf{A}_{\mathbf{H}}}\left(\mathbf{X}_{\{i,j\}} = 1\right)\right) = \prod_{\{i,j\}\in\mathbf{A}_{\mathbf{H}}}\mathbb{P}(\mathbf{X}_{\{i,j\}} = 1)$$

Tous les termes du produit valent p_n et il y en a_H . Ainsi $\mathbb{E}(X_H) = p_n^{a_H}$

18 \triangleright Choisir un élément de \mathcal{C}_0 consiste à faire le choix de l'ensemble des sommets puis faire celui de la distribution des arêtes.

Ainsi
$$|\mathcal{C}_0| = \binom{n}{s_0} \times c_0 = c_0 \frac{n!}{s_0! \cdot (n - s_0)!}$$

En s'autorisant toutes les permutations des s_0 sommets du graphe mais en « fixant » les arêtes, on obtient toutes les copies du graphe G_0 (en plusieurs exemplaires) dont l'ensemble des sommets est S'_0 .

Ainsi $c_0 \leqslant s_0!$ et donc

$$|\mathcal{C}_0| \le \frac{n!}{(n-s_0)!} = \prod_{i=0}^{s_0-1} (n-i) \le \prod_{i=0}^{s_0-1} n$$

Ainsi le cardinal de C_0 est inférieur à n^{s_0}

 $\mathbf{19} \, \triangleright \, \, \text{On a clairement} \, \boxed{ \mathbf{X}_n^0 = \sum_{\mathbf{H} \in \mathcal{C}_0} \mathbf{X}_{\mathbf{H}} }$

Au vu de l'énoncé, dans cette question et les suivantes, la lettre G devrait être interprétée comme une variable aléatoire suivant une loi uniforme sur \mathcal{E}_n . Ainsi

$$G \sim \mathcal{U}(\Omega_n)$$

Formellement G peut être vu comme l'application identité de Ω_n et l'événement $(H \subset G)$ est $\{G \in \Omega_n \mid H \subset G\}$.

D'une part comme
$$X_H \sim \mathcal{B}(\mathbb{P}(H \subset G))$$
, on a $\mathbb{E}(X_n^0) = \sum_{H \in \mathcal{C}_0} \mathbb{E}(X_H) = \sum_{H \in \mathcal{C}_0} \mathbb{P}(H \subset G)$.

D'autre part, comme $\forall H \in C_0, \ a_H = a_0$ et à l'aide de 17, on a

$$\mathbb{E}\left(\mathbf{X}_{n}^{0}\right) = \sum_{\mathbf{H} \in \mathcal{C}_{0}} \mathbb{E}\left(\mathbf{X}_{\mathbf{H}}\right) = \sum_{\mathbf{H} \in \mathcal{C}_{0}} p_{n}^{a_{0}} = |\mathcal{C}_{0}| \cdot p_{n}^{a_{0}}$$

On peut alors conclure avec 18 que $\boxed{\mathbb{E}\left(\mathbf{X}_{n}^{0}\right) = \sum_{\mathbf{H} \in \mathcal{C}_{0}} \mathbb{P}(\mathbf{H} \subset \mathbf{G}) \leqslant n^{s_{0}} p_{n}^{a_{0}}}$

20 \triangleright On remarque que ω_0 est bien défini car l'ensemble des sous-graphes H de G tel que $a_H \geqslant 1$ est un ensemble fini non vide.

On considère alors $H_0 \subset G_0$ et $a_{H_0} \geqslant 1$ réalisant le minimum ω_0 .

Ainsi en notant $\alpha_0 = a_{\rm H_0}$ et $\sigma_0 = s_{\rm H_0}$, on a $\omega_0 \alpha_0 = \sigma_0$.

On considère Y_n^0 la variable aléatoire sur Ω_n qui compte le nombre de copie de H_0 .

En appliquant 19 à H_0 au lieu de G_0 , on a alors $0 \leq \mathbb{E}(Y_n^0) \leq n^{\sigma_0} p_n^{\alpha_0}$.

On suppose que $p_n = o(n^{-\omega_0})$, alors

$$n^{\sigma_0} p_n^{\alpha_0} = o\left(n^{\sigma_0 - \omega_0 \alpha_0}\right) = o(1)$$

Avec 11, comme en 14, on a $\lim_{n\to+\infty} \mathbb{P}\left(Y_n^0>0\right)=0$.

Comme $H_0 \subset G_0$, on a $(X_n^0 > 0) \subset (Y_n^0 > 0)$ car toute copie de G_0 en contient une de H_0 .

Puis
$$0 \leqslant \mathbb{P}\left(\mathbf{X}_{n}^{0} > 0\right) \leqslant \mathbb{P}\left(\mathbf{Y}_{n}^{0} > 0\right)$$
, on conclut alors que $\lim_{n \to +\infty} \mathbb{P}\left(\mathbf{X}_{n}^{0} > 0\right) = 0$

21 ▷ En reprenant 19, on a

$$\left(\mathbf{X}_{n}^{0}\right)^{2} = \left(\sum_{\mathbf{H} \in \mathcal{C}_{0}} \mathbf{X}_{\mathbf{H}}\right)^{2} = \left(\sum_{\mathbf{H} \in \mathcal{C}_{0}} \mathbf{X}_{\mathbf{H}}\right) \times \left(\sum_{\mathbf{H}' \in \mathcal{C}_{0}} \mathbf{X}_{\mathbf{H}'}\right) = \sum_{(\mathbf{H}, \mathbf{H}') \in \mathcal{C}_{0}^{2}} \mathbf{X}_{\mathbf{H}} \mathbf{X}_{\mathbf{H}'}$$

On considère sans doute ici que l'union et l'intersection des graphes $H = (S_H, A_H)$ et $H' = (S_{H'}, A_{H'})$ est défini par :

$$H \cup H' = (S_H \cup S_{H'}, A_H \cup A_{H'})$$
 et $H \cap H' = (S_H \cap S_{H'}, A_H \cap A_{H'})$

Ceci n'est pas formellement défini dans l'énoncé mais cela définit effectivement des graphes.

La variable aléatoire X_H est l'indicatrice de l'événement $\{H \subset G\}$ et il en est de même pour H'.

Ainsi $X_H X_{H'}$ est la variable aléatoire indicatrice de l'événement $\{H \subset G\} \cap \{H' \subset G\}$.

On remarque que $\{H \subset G\} \cap \{H' \subset G\} = \{H \cup H' \subset G\}.$

Ainsi : $X_H X_{H'} = X_{H \cup H'}$ (le produit de deux indicatrices est celle de l'intersection). D'où

$$\mathbb{E}\left(\left(\mathbf{X}_{n}^{0}\right)^{2}\right) = \sum_{(\mathbf{H}, \mathbf{H}') \in \mathcal{C}_{0}^{2}} \mathbb{E}\left(\mathbf{X}_{\mathbf{H}} \mathbf{X}_{\mathbf{H}'}\right) = \sum_{(\mathbf{H}, \mathbf{H}') \in \mathcal{C}_{0}^{2}} \mathbb{E}\left(\mathbf{X}_{\mathbf{H} \cup \mathbf{H}'}\right)$$

Comme $a_{{\rm H}\cup{\rm H}'}=a_{\rm H}+a_{{\rm H}'}-a_{{\rm H}\cap{\rm H}'}=2a_0-a_{{\rm H}\cap{\rm H}'}$ et à l'aide de 17, on obtient :

$$\mathbb{E}\left(\left(\mathbf{X}_{n}^{0}\right)^{2}\right) = \sum_{(\mathbf{H},\mathbf{H}')\in\mathcal{C}_{0}^{2}} \mathbb{P}\left(\mathbf{H}\cup\mathbf{H}'\subset\mathbf{G}\right) = \sum_{(\mathbf{H},\mathbf{H}')\in\mathcal{C}_{0}^{2}} p_{n}^{2a_{0}-a_{\mathbf{H}\cap\mathbf{H}'}}$$

 $\mathbf{22} \mathrel{\triangleright} \text{ En reprenant les remarques de 21, on a } \Sigma_0 = \sum_{\stackrel{(H,H') \in \mathcal{C}_0^2}{s_{H \cap H'} = 0}} \mathbb{P}(H \cup H' \subset G) \leqslant \sum_{\stackrel{(H,H') \in \mathcal{C}_0^2}{s_{H \cap H'} = 0}} \mathbb{E}\left(X_H X_{H'}\right)$

Soit H et H' $\in \mathcal{C}_0$ tel que $s_{H \cap H'} = 0$. Alors par lemme des coalitions et indépendance des $X_{i,j}$, on a $X_H \perp \!\!\! \perp X_{H'}$. Ainsi

$$\Sigma_{0} \leqslant \sum_{(H,H') \in \mathcal{C}_{0}^{2}} \mathbb{E}\left(X_{H}\right) \cdot \mathbb{E}\left(X_{H'}\right) = \left(\sum_{H \in \mathcal{C}_{0}} \mathbb{E}\left(X_{H}\right)\right) \cdot \left(\sum_{H' \in \mathcal{C}_{0}} \mathbb{E}\left(X_{H'}\right)\right) = \left(\mathbb{E}\left(\sum_{H \in \mathcal{C}_{0}} X_{H}\right)\right)^{2}$$

Avec 19, on peut alors conclure que $\Sigma_0 \leq \left(\mathbb{E}\left(\mathbf{X}_n^0\right)\right)^2$

$$\mathbf{23} \, \triangleright \, \text{On a } \Sigma_k = \sum_{\mathbf{H} \in \mathcal{C}_0} \sum_{\mathbf{H}' \in \mathcal{C}_0 \atop s_{\mathbf{H} \cap \mathbf{H}'} = k} \mathbb{P}(\mathbf{H} \cup \mathbf{H}' \subset \mathbf{G}) = \sum_{\mathbf{H} \in \mathcal{C}_0} \sum_{\mathbf{H}' \in \mathcal{C}_0 \atop s_{\mathbf{H} \cap \mathbf{H}'} = k} \mathbb{E}\left(\mathbf{X}_{\mathbf{H} \cup \mathbf{H}'}\right)$$

Soit $H, H' \in \mathcal{C}_0$ tels que $s_{H \cap H'} = k$. On a $a_{H \cup H'} = a_H + a_{H'} - a_{H \cap H'} = 2a_0 - a_{H \cap H'}$.

Or si $a_{\mathrm{H}\cap\mathrm{H}'}\geqslant 1$, on a $\frac{s_{\mathrm{H}\cap\mathrm{H}'}}{a_{\mathrm{H}\cap\mathrm{H}'}}\geqslant \omega_0>0$ car $\mathrm{H}\cap\mathrm{H}'\subset\mathrm{H}\subset\mathrm{G}_0.$

Ainsi $a_{\mathrm{H}\cap\mathrm{H}'}\leqslant\frac{s_{\mathrm{H}\cap\mathrm{H}'}}{\omega_0}=\frac{k}{\omega_0}$ et ceci est valable même si $a_{\mathrm{H}\cap\mathrm{H}'}=0.$

donc $a_{\mathrm{H}\cup\mathrm{H}'} \geqslant 2a_0 - \frac{k}{\omega_0}$. Comme $t \mapsto p_n^t$ est décroissante et selon 17, on a

$$\Sigma_k = \sum_{\mathbf{H} \in \mathcal{C}_0} \sum_{\mathbf{H}' \in \mathcal{C}_0 \atop s_{\mathbf{H} \cap \mathbf{H}'} = k} p_n^{a_{\mathbf{H} \cup \mathbf{H}'}} \leqslant \sum_{\mathbf{H} \in \mathcal{C}_0} \sum_{\mathbf{H}' \in \mathcal{C}_0 \atop s_{\mathbf{H} \cap \mathbf{H}'} = k} p_n^{2a_0 - \frac{k}{\omega_0}}$$

Pour $H \in \mathcal{C}_0$, le nombre de parties $S_0' \subset [1, n]$ de cardinal s_0 telles que $|S_H \cap S_0'| = k$ vaut $\binom{s_0}{k} \binom{n - s_0}{s_0 - k}$ (on choisit les k sommets dans S_H puis les $s_0 - k$ dans $[1, n] \setminus S_H$).

Pour une telle partie S_0' , il y a c_0 copies de G_0 de la forme (S_0', A_0') . Ainsi $\sum_{\substack{H' \in C_0 \\ s_{\text{TO}}(n) = k}} p_n^{2a_0 - \frac{k}{\omega_0}} = \binom{s_0}{k} \binom{n - s_0}{s_0 - k} c_0 p_n^{2a_0 - \frac{k}{\omega_0}}$

On peut alors conclure que $\sum_{k \in \mathcal{C}_0} \binom{s_0}{k} \binom{n-s_0}{s_0-k} c_0 p_n^{2a_0} p_n^{-\frac{k}{\omega_0}}$

24
$$ightharpoonup \text{On a } q! \binom{r}{q} r^{-q} = \frac{r!}{(r-q)!r^q} = \prod_{i=0}^{q-1} \frac{r-i}{r} \geqslant \left(\frac{r-q+1}{r}\right)^q = \left(1 - \frac{q-1}{r}\right)^q.$$

Or
$$1 - \frac{q-1}{r} \ge 1 - \frac{q-1}{q} = \frac{1}{q} > 0$$
 car $r \ge q > 0$ et $q-1 \ge 0$.

Comme $t \mapsto \frac{t^q}{q!}$ est croissante sur \mathbb{R}^+ ,

on a bien
$$rac{r}{q}r^{-q} \geqslant \frac{1}{q!} \left(1 - \frac{q-1}{q}\right)^q$$

À l'aide de 23, on a $0 \leqslant \Sigma_k \leqslant |\mathcal{C}_0| \binom{s_0}{k} \binom{n-s_0}{s_0-k} c_0 p_n^{2a_0} p_n^{-\frac{k}{\omega_0}}$.

De plus selon 18 et 19, $\mathbb{E}\left(\mathbf{X}_{n}^{0}\right)^{2}=\left|\mathcal{C}_{0}\right|^{2}p_{n}^{2a_{0}}$. Ainsi avec 20 et en minorant $\binom{n}{s_{0}}$, on a

$$0 \leqslant \frac{\Sigma_k}{\mathbb{E}\left(\mathbf{X}_n^0\right)^2} \leqslant \frac{\binom{s_0}{k}\binom{n-s_0}{s_0-k}}{\binom{n}{s_0}} p_n^{-\frac{k}{\omega_0}} \leqslant \binom{s_0}{k} \frac{\binom{n-s_0}{s_0-k}}{\frac{n^{s_0}}{s_0!} \left(1 - \frac{s_0-1}{s_0}\right)^{s_0}} \times p_n^{-\frac{k}{\omega_0}} \leqslant \mathbf{K} \frac{(n-s_0)!}{n^{s_0}(n+k-2s_0)!} p_n^{-\frac{k}{\omega_0}}$$

avec K constante indépendante de n.

Or
$$0 \le \frac{(n-s_0)!}{(n+k-2s_0)!} = \prod_{i=0}^{s_0-k-1} (n-s_0-i) \le n^{s_0-k}$$
 d'où

$$0 \leqslant \frac{\sum_k}{\mathbb{E}(X_n^0)^2} \leqslant K n^{-k} p_n^{-\frac{k}{\omega_0}}$$

Par hypothèse, on a $\lim_{n\to +\infty} n^{-\omega_0} p_n^{-1} = 0$ ainsi $p_n^{-1} = o\left(n^{\omega_0}\right)$ et donc $p_n^{-\frac{k}{\omega_0}} = o\left(n^k\right)$.

On en déduit que pour $k \in [1, s_0]$, on a $\Sigma_k = o\left(\mathbb{E}\left(\mathbf{X}_n^0\right)^2\right)$ lorsque n tend vers $+\infty$

25 ▷ Selon Huygens, on $\mathbb{V}\left(\mathbf{X}_{n}^{0}\right) = \mathbb{E}\left(\left(\mathbf{X}_{n}^{0}\right)^{2}\right) - \mathbb{E}\left(\mathbf{X}_{n}^{0}\right)^{2}$.

À l'aide de 21 et par définition des Σ_k , on a $\mathbb{E}\left(\left(\mathbf{X}_n^0\right)^2\right) = \sum_{k=0}^{s_0} \Sigma_k$.

Ainsi avec 22, on a

$$0 \leqslant \mathbb{V}\left(\mathbf{X}_{n}^{0}\right) = \sum_{k=0}^{s_{0}} \Sigma_{k} - \mathbb{E}\left(\mathbf{X}_{n}^{0}\right)^{2} \leqslant \sum_{k=1}^{s_{0}} \Sigma_{k}$$

Ainsi avec 24, on a $\mathbb{V}\left(\mathbf{X}_{n}^{0}\right)=o\left(\mathbb{E}\left(\mathbf{X}_{n}^{0}\right)^{2}\right)$ lorsque n tend vers $+\infty$, par somme finie.

En conclusion $\lim_{n \to +\infty} \frac{\mathbb{V}\left(\mathbf{X}_{n}^{0}\right)}{\left(\mathbb{E}\left(\mathbf{X}_{n}^{0}\right)\right)^{2}} = 0$

 $\mathbf{26} \, \triangleright \, \text{ Å l'aide de 25 et 12, on a } \lim_{n \to +\infty} \mathbb{P}\left(\mathbf{X}_n^0 = 0\right) = 0 \text{ et donc } \lim_{n \to +\infty} \mathbb{P}\left(\mathbf{X}_n^0 > 0\right) = 1 \text{ comme en 15.}$

Ainsi avec 20, la suite $(n^{-\omega_0})$ est un fonction de seuil pour la propriété $(X_n^0(G) > 0)$

On conclut que la suite $(k^{-\omega_0})_{k\geqslant 2}$ est une fonction de seuil pour la propriété \mathcal{P}_n

 $\mathbf{27} riangleq$ Un graphe possède une arête si et seulement si il contient une copie du graphe $G_0^{(1)} = (S_1, A_1) = (\{0, 1\}, \{\{0, 1\}\}).$

$$\text{Or } \left\{ \mathbf{H} \subset \mathbf{G}_0^{(1)} \mid a_{\mathbf{H}} \geqslant 1 \right\} = \{ \mathbf{G}_0^{(1)} \} \text{ ainsi dans ce cas } \omega_0^{(1)} = \min_{\substack{\mathbf{H} \subset \mathbf{G}_0^{(1)} \\ a_{\mathbf{H}} > 1}} \frac{s_{\mathbf{H}}}{a_{\mathbf{H}}} = \frac{s_{\mathbf{G}_0^{(1)}}}{a_{\mathbf{G}_0^{(1)}}} = 2.$$

donc la suite $(k^{-2})_{k\geqslant 2}$ est une fonction de seuil pour la propriété "le graphe $G\in\Omega$ possède au moins une arête".

On retrouve ainsi le résultat de la question 16 et ce cas correspond à l'étoile à une branche.

On note $G_0^{(d)} = (S_d, A_d)$ une étoile à d branches de centre 0 où $S_d = [0, d]$.

Soit $H \subset G_0^{(d)}$ tel que $a_H \geqslant 1$. Alors nécessairement $0 \in S_H$ et $a_H + 1 = s_H$ d'où $\frac{s_H}{a_H} = 1 + \frac{1}{a_H} \geqslant 1 + \frac{1}{d}$.

De plus $\frac{s_{\mathbf{G}_0^{(d)}}}{a_{\mathbf{G}^{(d)}}}=1+\frac{1}{d}$ et donc $\omega_0^{(d)}=1+\frac{1}{d}$

La suite $(k^{-1-1/d})_{k\geqslant 2}$ est une fonction de seuil pour la propriété « contenir une copie de l'étoile à d branches »

Ceci généralise le cas d'une seule branche.