Correction

d'après Mines de Sup 1997

Partie I

- 1. C'est une équation différentielle linéaire d'ordre 1 (résolue en y')
- 2.a $1^{\text{ère}}$ méthode : $x \mapsto 2x$ et $x \mapsto 1$ sont de classe \mathcal{C}^{∞} donc les solutions de y' + 2xy = 1 le sont aussi.

 $2^{\text{ème}}$ méthode : Par récurrence sur $n \in \mathbb{N}$, montrer que f est de classe \mathcal{C}^n .

Pour n = 0: f est continue car dérivable.

Supposons la propriété établie au rang $n \ge 0$.

f'(x) = 1 - 2xf(x). Par HR, f est de classe C^n , donc par opérations, f' est C^n puis f est C^{n+1} Récurrence établie.

- 2.b Puisque: $\forall x \in \mathbb{R}, f'(x) + 2xf(x) = 1$, pour x = 0, on observe f'(0) = 1.
- 3.a $1^{\text{ère}}$ méthode : Par récurrence sur $n \in \mathbb{N}$... $2^{\text{ème}}$ méthode : Puisque $\forall x \in \mathbb{R}, f'(x) = 1 2xf(x)$ en dérivant à l'ordre $n+1 \in \mathbb{N}^*$: $f^{(n+2)}(x) = -(2xf(x))^{(n+1)} = -2xf^{(n+1)}(x) 2(n+1)f^{(n)}(x)$ (en vertu de la formule de Leibniz).
- 4.a Puisque f est \mathcal{C}^{∞} sur \mathbb{R} et $0 \in \mathbb{R}$, le théorème de Taylor-Young assure l'existence du $DL_p(0)$ de f. De plus la formule de Taylor-Young donne : $a_n = \frac{f^{(n)}(0)}{n!}$.
- 4.b En évaluant la relation du 3.a en $0: f^{(n+2)}(0) = -2(n+1)f^{(n)}(0)$.

On en tire la relation $a_{n+2} = \frac{-2}{n+2} a_n$.

$$a_{2k+1} = \frac{-2}{2k+1} a_{2k-1} = \frac{-2}{2k+1} \frac{-2}{2k-1} \dots \frac{-2}{3} a_1 = \frac{(-2)^k 2^k k!}{(2k+1)!} a_1 = \frac{(-4)^k k!}{(2k+1)!}$$
 puisque $a_1 = f'(0) = 1$.

4.c
$$a_{2k} = \frac{-1}{k} a_{2k-2} = \frac{(-1)}{k} \frac{(-1)}{k-1} ... \frac{(-1)}{1} a_0 = \frac{(-1)^k}{k!} f(0)$$
.

Partie II

- 1. $x \mapsto \mathrm{e}^{-x^2} \ \mathrm{est} \ \mathcal{C}^1 \ \mathrm{sur} \ \mathbb{R} \ \mathrm{et} \ x \mapsto \int_0^x \mathrm{e}^{t^2} \mathrm{d}t \ \mathrm{aussi} \ \mathrm{car} \ \mathrm{primitive} \ \mathrm{de} \ \mathrm{la} \ \mathrm{fonction} \ \mathrm{continue} : \ x \mapsto \mathrm{e}^{x^2} \ .$ Par opérations sur les fonctions \mathcal{C}^1 , D est $\mathcal{C}^1 \ \mathrm{sur} \ \mathbb{R}$. De plus $D'(x) = -2x\mathrm{e}^{-x^2} \int_0^x \mathrm{e}^{t^2} \mathrm{d}t + \mathrm{e}^{-x^2} \mathrm{e}^{x^2} \ \mathrm{d}$ 'où D'(x) + 2xD(x) = 1.
- 2. $\forall x \in \mathbb{R} , -x \in \mathbb{R} \text{ et } D(-x) = e^{-x^2} \int_0^{-x} e^{t^2} dt.$ $\text{Or } \int_0^{-x} e^{t^2} dt = -\int_0^x e^{u^2} du = -\int_0^x e^{t^2} dt \text{ donc } D(-x) = -D(x).$ D est une fonction impaire.
- 3. $\forall x \ge 0$, $\forall t \in [0,x]$: $1 \le e^{t^2} \le e^{x^2}$ donc $x \le \int_0^x e^{t^2} dt \le x e^{x^2}$ puis $x e^{-x^2} \le D(x) \le x$.
- 4.a $\int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{2t}{2t} e^{t^{2}} dt = \left[\frac{1}{2t} e^{t^{2}} \right]_{1}^{x} + \frac{1}{2} \int_{1}^{x} \frac{1}{t^{2}} e^{t^{2}} dt = \frac{e^{x^{2}}}{2x} \frac{e}{2} + \frac{1}{2} \int_{1}^{x} \frac{1}{t^{2}} e^{t^{2}} dt$

Par une nouvelle intégration par parties

$$\int_{1}^{x} e^{t^{2}} dt = \frac{e^{x^{2}}}{2x} - \frac{e}{2} + \frac{1}{2} \left[\frac{1}{2t^{3}} e^{t^{2}} \right]_{1}^{x} + \frac{3}{4} \int_{1}^{x} \frac{e^{t^{2}}}{t^{4}} dt = \frac{e^{x^{2}}}{2x} + \frac{e^{x^{2}}}{4x^{3}} - \frac{3e}{4} + \frac{3}{4} \int_{1}^{x} \frac{e^{t^{2}}}{t^{4}} dt$$

4.b
$$h$$
 est dérivable et $h'(t) = \frac{2e^{t^2}}{t} - \frac{2e^{t^2}}{t^3} = \frac{2(t^2 - 1)}{t^3}e^{t^2} \ge 0$ sur $[1, +\infty[$.

h est donc croissante sur $[1, +\infty[$.

$$\forall x \in [1, +\infty[, \forall t \in [1, x], \frac{\mathrm{e}^{t^2}}{t^4} = h(t) \frac{1}{t^2} \le h(x) \frac{1}{t^2} \text{ donc } \int_1^x \frac{\mathrm{e}^{t^2}}{t^4} \mathrm{d}t \le h(x) \int_1^x \frac{\mathrm{d}t}{t^2} = h(x) \frac{x-1}{x}.$$

$$\text{puis } 0 \leq \frac{\int_{1}^{x} \frac{\operatorname{e}^{t^{2}}}{t^{4}} \operatorname{d}t}{\frac{\operatorname{e}^{x^{2}}}{2x}} \leq \frac{h(x)}{\frac{\operatorname{e}^{x^{2}}}{2x}} \frac{x-1}{x} \leq \frac{2}{x} \underset{x \to +\infty}{\longrightarrow} 0 \text{ d'où } \int_{1}^{x} \frac{\operatorname{e}^{t^{2}}}{t^{4}} dt = o\left(\frac{\operatorname{e}^{x^{2}}}{2x}\right) \text{ au voisinage de } +\infty.$$

4.c
$$\frac{e^{x^2}}{4x^3} = o\left(\frac{e^{x^2}}{2x}\right), \frac{3e}{4} = o\left(\frac{e^{x^2}}{2x}\right) \text{ et } \frac{3}{4} \int_1^x \frac{e^{t^2}}{t^4} dt = o\left(\frac{e^{x^2}}{2x}\right) \text{ donc } \int_1^x e^{t^2} dt = \frac{e^{x^2}}{2x} + o\left(\frac{e^{x^2}}{2x}\right) \sim \frac{e^{x^2}}{2x}.$$

$$\int_0^x e^{t^2} dt = \int_1^x e^{t^2} dt + \int_0^1 e^{t^2} dt = \frac{e^{x^2}}{2x} + o\left(\frac{e^{x^2}}{2x}\right) \sim \frac{e^{x^2}}{2x} \text{ puis } D(x) \sim \frac{1}{2x} \text{ au voisinage de } +\infty.$$

5.a D est une positive sur \mathbb{R}^+ et négative sur \mathbb{R}^- .

Puisque D s'annule en 0 et est de limite nulle en $+\infty$, D admet un admet un maximum sur \mathbb{R}^+ (*) qui sera aussi maximum sur \mathbb{R} . Celui-ci est atteint en un point $b \in \mathbb{R}^+$, et puisque D n'est pas la fonction nulle, on a nécessairement $b \neq 0$.

(*) La propriété est graphiquement claire, mais un peu lourde à démontrer :

Soit
$$\rho = D(1) > 0$$
. Puisque $D \to 0$, $\exists A \in \mathbb{R}^{+*}$ tel que $\forall x \ge A, D(x) \le \rho$.

Posons $a=\max(1,A)$. Puisque D est continue sur le segment $\left[0,a\right]$, elle y est admet un maximum en un point $b\in\left[0,a\right]$. Puisque $1\in\left[0,a\right]$, $D(b)\geq D(1)=\rho$ et donc $\forall x\geq a\geq A, D(b)\geq\rho\geq D(x)$.

Ainsi b est maximum de d sur \mathbb{R}^+ .

- 5.b Puisque D est dérivable en l'extremum local b, on a D'(b) = 0 d'où $D(b) = \frac{1}{2b}$.
- 5.c Si c est un maximum de D alors comme ci-dessus $D(c) = \frac{1}{2c}$.

Or b et c étant tous deux maximum de D, D(b) = D(c) d'où b = c.

Partie III

1.
$$y' + 2xy = 0 \Leftrightarrow y' = -2xy$$
 et $\int -2x dx = -x^2 + C^{te}$ d'où $y_0(x) = Ce^{-x^2}$ avec $C \in \mathbb{R}$. $y_1(x) = D(x)$ est solution particulière.

Solution générale :
$$y(x) = (C + \int_{0}^{x} e^{t^2} dt)e^{-x^2}$$
 avec $C \in \mathbb{R}$.

2. Soit y une solution de la forme ci-dessus supposée impaire.

$$y(0) = 0$$
 donc $C = 0$ puis $y = D$.

Inversement D est une solution impaire de l'équation différentielle étudiée.