X-ENS 2021

CORRIGÉ DE MATHÉMATIQUES -B- MP

m.laamoum@gmail.com

Partie I

1. (a) Pour $n \in \mathbb{N}^*$, on a $\{n|X\} = \bigcup_{k \in \mathbb{N}^*} [X = kn]$, les événements $([X = kn])_{k \in \mathbb{N}^*}$ sont deux à deux disjoints , donc

$$P(n|X) = \sum_{k=1}^{+\infty} P(X = kn)$$
$$= \frac{1}{\zeta(s)} \sum_{k=1}^{+\infty} \frac{1}{(kn)^s}$$
$$= \frac{1}{n^s}$$

(b) Soit $(\alpha_i)_{1 \le i \le n}$ une famille finie. Les p_i sont des nombres premiers distincts , ce qui donne

$$\bigcap_{k=1}^{n} \{ p_k^{\alpha_k} | X \} = \left\{ \prod_{k=1}^{n} p_k^{\alpha_k} | X \right\}$$

donc

$$P(\bigcap_{k=1}^{n} \{p_k^{\alpha_k} | X\}) = \frac{1}{\left(\prod_{k=1}^{n} p_k^{\alpha_k}\right)^s}$$
$$= \prod_{k=1}^{n} P(\{p_k^{\alpha_k} | X\})$$

ce qui prouve l'indépendance des événements $(\{p_k^{\alpha_k}|X\})_{1 \le k \le n}$.

Nous avons donc l'indépendance de toute sous famille finie événements de $(\{p_k^{\alpha_k}|X\})_{k\geq 1}$, ce qui prouve l'indépendance des événements $(\{p_k^{\alpha_k}|X\})_{k\geq 1}$.

2. (a) Les événements $\left(\overline{\{p_k|X\}}\right)_{k\geq 1}$ sont mutuellement indépendants car les événements $(\{p_k|X\})_{k\geq 1}$ le sont , soit $r\geqslant 1$:

$$P\left(\bigcap_{i=1}^{r} \overline{\{p_i | X\}}\right) = P\left(\bigcap_{i=1}^{r} \{p_i \nmid X\}\right)$$
$$= \prod_{i=1}^{r} P\left(\{p_i \nmid X\}\right).$$
$$= \prod_{i=1}^{r} \left(1 - p_i^{-s}\right).$$

(b) Posons $A_r = \bigcap_{i=1}^r \{p_i \nmid X\}$. Les A_r forment une suite décroissante d'événements, le théorème de la limite monotone des probabilités donne

1

$$P(\bigcap_{r=1}^{+\infty} A_r) = \lim_{n \to +\infty} P(A_n)$$
$$= \lim_{n \to +\infty} \prod_{k=1}^{n} (1 - p_k^{-s})$$

Comme
$$\bigcap_{r=1}^{+\infty} A_r = \bigcap_{i=1}^{+\infty} \{p_i \nmid X\}$$
 alors $\bigcap_{r=1}^{+\infty} A_r = [X=1]$ et $P(\bigcap_{r=1}^{+\infty} A_r) = \frac{1}{\zeta(s)}$ ce qui donne

$$\frac{1}{\zeta(s)} = \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - p_k^{-s}\right)$$

3. (a) Soit $k \in \mathbb{N}^*$, la variable aléatoire $\nu_{p_k}(X) + 1$ prend ses valeurs dans \mathbb{N}^* . Pour $i \in \mathbb{N}^*$ on a :

$$[\nu_{p_k}(X) + 1 = i] = \bigcup_{\substack{n \ge 1 \\ p_k \nmid n}} [X = np_k^{i-1}]$$

donc

$$\begin{split} P\left(\nu_{p_k}(X) + 1 = i\right) &= \sum_{\substack{n \geq 1 \\ p_k \nmid n}} P(X = np_k^{i-1}) \\ &= \frac{1}{\zeta(s)p_k^{(i-1)s}} \sum_{\substack{n \geq 1 \\ p_k \nmid n}} \frac{1}{n^s} \\ &= \frac{1}{\zeta(s)p_k^{(i-1)s}} (\zeta(s) - \sum_{m=1}^{+\infty} \frac{1}{(mp_k)^s}) \\ &= \frac{1}{p_k^{(i-1)s}} (1 - \frac{1}{p_k s}) \end{split}$$

Donc $(\nu_{p_k}(X) + 1) \sim \mathcal{G}(1 - p_k^{-s})$

(b) Posons $Y_i=\nu_{p_{k_i}}(X)$. Montrons le résultat par récurrence sur $r\in\mathbb{N}^*$. C'est vrai pour r=1 :

$$P(Y_1 = n_1) = P(Y_1 \ge n_1) - P(Y_1 \ge n_1 + 1)$$

Supposons le pour r: Soit, $k_1 < \cdots < k_r$ dans \mathbb{N}^* et $(n_1, \dots, n_r) \in \mathbb{N}^r$, on a pour toute probabilité P définie sur (Ω, \mathcal{A}) :

$$P(Y_{1} = n_{1}, ..., Y_{r} = n_{r}) = \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r}) \in \{0,1\}^{r} \\ c_{1} + c_{2} - \ell}} P(Y_{1} \geqslant n_{1} + \varepsilon_{1}, ..., Y_{r} \geqslant n_{r} + \varepsilon_{r})$$

Soit, $k_1 < \cdots < k_{r+1}$ dans \mathbb{N}^* et $(n_1, \ldots, n_{r+1}) \in \mathbb{N}^{r+1}$. Ecrivons

$$P(Y_1 = n_1, ..., Y_{r+1} = n_{r+1}) = P(Y_1 = n_1, ..., Y_r = n_r, Y_{r+1} \ge n_{r+1}) - P(Y_1 = n_1, ..., Y_r = n_r, Y_{r+1} \ge n_{r+1} + 1)$$

par la formule de probabilité conditionnelle

$$P(Y_1 = n_1, ..., Y_r = n_r, Y_{r+1} \ge n_{r+1}) = P(Y_{r+1} \ge n_{r+1}) P_{[Y_{r+1} > n_{r+1}]}(Y_1 = n_1, ..., Y_r = n_r)$$

la relation est triviale si $P(Y_{r+1} \ge n_{r+1}) = 0$. L'hypothèse de récurrence appliquée à $P_{[Y_{r+1} \ge n_{r+1}]}$ qui est une probabilité sur (Ω, \mathcal{A}) donne

$$P_{[Y_{r+1} \ge n_{r+1}]}(Y_1 = n_1, ..., Y_r = n_r) = \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_1, ..., \varepsilon_r) \in \{0, 1\}^r \\ \varepsilon_1, ..., \varepsilon_r \ge \ell}} P_{[Y_{r+1} \ge n_{r+1}]}(Y_1 \geqslant n_1 + \varepsilon_1, ..., Y_r \geqslant n_r + \varepsilon_r)$$

de même on obtient

$$P_{[Y_{r+1} \ge n_{r+1}+1]}(Y_1 = n_1, ..., Y_r = n_r) = \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_1, ..., \varepsilon_r) \in \{0,1\}^r \\ \varepsilon_1 + ... + \varepsilon_r = \ell}} P_{[Y_{r+1} \ge n_{r+1}+1]}(Y_1 \ge n_1 + \varepsilon_1, ..., Y_r \ge n_r + \varepsilon_r)$$

ce qui donne

$$P(Y_{1} = n_{1}, ..., Y_{r+1} = n_{r+1}) = \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r}) \in \{0,1\}^{r} \\ \varepsilon_{1} + ... + \varepsilon_{r} = \ell}} P(Y_{r+1} \ge n_{r+1}) P_{[Y_{r+1} \ge n_{r+1}]} (Y_{1} \ge n_{1} + \varepsilon_{1}, ..., Y_{r} \ge n_{r} + \varepsilon_{r})$$

$$- \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r}) \in \{0,1\}^{r} \\ \varepsilon_{1} + ... + \varepsilon_{r} = \ell}} P(Y_{r+1} \ge n_{r+1} + 1) P_{[Y_{r+1} \ge n_{r+1} + 1]} (Y_{1} \ge n_{1} + \varepsilon_{1}, ..., Y_{r} \ge n_{r} + \varepsilon_{r})$$

qui s'écrit

$$P(Y_{1} = n_{1}, ..., Y_{r+1} = n_{r+1}) = \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r}) \in \{0,1\}^{r} \\ \varepsilon_{1} + ... + \varepsilon_{r} = \ell}} P(Y_{1} \ge n_{1} + \varepsilon_{1}, ..., Y_{r} \ge n_{r} + \varepsilon_{r}, Y_{r+1} \ge n_{r+1})$$

$$- \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r}) \in \{0,1\}^{r} \\ \varepsilon_{1} + ... + \varepsilon_{n} = \ell}} P(Y_{1} \ge n_{1} + \varepsilon_{1}, ..., Y_{r} \ge n_{r} + \varepsilon_{r}, Y_{r+1} \ge n_{r+1} + 1)$$

finalement

$$P(Y_{1} = n_{1}, ..., Y_{r+1} = n_{r+1}) = \sum_{\substack{r+1 \\ \ell=0}}^{r+1} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, ..., \varepsilon_{r+1}) \in \{0,1\}^{r+1} \\ \varepsilon_{1} + ... + \varepsilon_{r+1} = \ell}} P(Y_{1} \ge n_{1} + \varepsilon_{1}, ..., Y_{r+1} \ge n_{r+1} + \varepsilon_{r+1})$$

ce qui donne le résultat pour r + 1. Ainsi la proposition est vraie pour tout r > 0.

(c) Remarquons que

$$P\left(\nu_{p_{k_1}}(X) \geqslant n_1 + \varepsilon_1, \dots, \nu_{p_{k_r}}(X) \geqslant n_r + \varepsilon_r\right) = P\left(\prod_{i=1}^r p_{k_i}^{n_i + \varepsilon_i} | X\right).$$

$$= \frac{1}{\prod_{i=1}^r p_{k_i}^{(n_i + \varepsilon_i)s}}$$

Par suite

$$\begin{split} P\left(\nu_{p_{k_{1}}}(X) = n_{1}, \dots, \nu_{p_{k_{r}}}(X) = n_{r}\right) &= \sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_{1}, \dots, \varepsilon_{r}) \in \{0, 1\}^{r} \\ \varepsilon_{1} + \dots + \varepsilon_{r} = \ell}} \frac{1}{\prod_{i=1}^{r} p_{k_{i}}^{(n_{i} + \varepsilon_{i})s}} \\ &= \sum_{\substack{(\varepsilon_{1}, \dots, \varepsilon_{r}) \in \{0, 1\}^{r} \\ \prod_{i=1}^{r} p_{k_{i}}^{(n_{i} + \varepsilon_{i})s}}} \frac{1}{\prod_{i=1}^{r} p_{k_{i}}^{(n_{i} + \varepsilon_{i})s}} \\ &= \prod_{i=1}^{r} \left(\frac{1}{p_{k_{i}}^{n_{i}}} - \frac{1}{p_{k_{i}}^{(n_{i} + 1)}}\right) \\ &= \prod_{i=1}^{r} P\left(\nu_{p_{k_{i}}}(X) = n_{i}\right) \end{split}$$

On en déduit que les variables aléatoires $v_{p_1}(X), \dots, v_{p_k}(X), \dots$ sont mutuellement indépendantes . 4. (a) Remarquons que $\chi_4(4n+1)=1$ et $\chi_4(4n+3)=-1$ donc

$$r_1(n) = \sum_{d|n,d\equiv 1[4]} \chi_4(d)$$
 et $r_3(n) = -\sum_{d|n,d\equiv 3[4]} \chi_4(d)$

par suite

$$g(n) = \sum_{d|n} \chi_4(d)$$

Comme m et n sont premiers entre eux, les diviseurs de nm sont exactement les $d = d_1d_2$ avec $d_1|n$ et $d_2|m$, ce qui

$$g(nm) = \sum_{d_1|n, d_2|m} \chi_4(d_1d_2)$$

 χ_4 est multiplicative donc

$$g(mn) = \sum_{d_1|n, d_2|m} \chi_4(d_1)\chi_4(d_2)$$
$$= \sum_{d_1|n} \chi_4(d_1) \sum_{d_2|m} \chi_4(d_2)$$
$$= g(m).g(n)$$

On faite g est dite multiplicative car on a g(nm) = g(n)g(m) si $n \wedge m = 1$ et χ_4 est dite totalement multiplicative car $\chi_4(nm) = \chi_4(n)\chi_4(m)$ pour tout n et m.

- (b) Les diviseurs positifs de p^n sont les p^k avec k = 0, ..., n.
 - Si p=2 alors les diviseurs de p^n sont pair sauf 1 et $1 \equiv 1[4]$ donc $g(2^n)=1$.
 - Si $p \equiv 1[4]$ alors pour tout $k, p^k \equiv 1[4], r_1(p^n) = n+1$ et $r_3(p^n) = 0$ ainsi $g(p^n) = n+1$.
 - Si $p \equiv -1[4]$ alors $p^k \equiv 1[4]$ si k est pair et $p^k \equiv -1[4]$ si k est impair.

 - Si $p = r_1$ and si $p = r_1$ is it core pair of $p = r_1$ is it. Si $p = r_2$ impair alors $r_1(p^n) = r_3(p^n) = \frac{n+1}{2}$ et $g(p^n) = 0$. Si $p = r_2$ et $g(p^n) = r_3$ et $g(p^n) = r_4$. On écrit dans ce cas $g(p^n) = \frac{1}{2}(1 + (-1)^n)$
- 5. On a $|f_n(X)| \le h(X)$ et h(X) d'espérance finie, $f_n(X)$ est donc d'espérance finie. Le théorème de transfert donne

$$E(f_n(X)) = \sum_{k=1}^{\infty} f_n(k) P(X = k)$$

Posons $u_k(n) = f_n(k)P(X = k)$, u_k est bornée et

$$\sup_{n \in \mathbb{N}^*} |u_k(n)| \le |h(k)|P(X=k)$$

La série $\sum\limits_{k\geq 1}h(k)P(X=k)$ converge absolument car h(X) d'espérance finie ($E(h(X))=\sum\limits_{k=1}^{\infty}h(k)P(X=k)$) donc la série $\sum\limits_{k\geq 1}\sup_{n\in\mathbb{N}^*}|u_k(n)|$ converge , ainsi $\sum\limits_{k}u_k$ converge normalement et uniformément sur \mathbb{N}^* . De plus

$$\forall k \in \mathbb{N}^*, \lim_{n \to +\infty} u_k(n) = f(k)P(X = k)$$

Le théorème d'interversion des limites (ou de \sum et lim) et donne

$$\lim_{n \to +\infty} E(f_n(X)) = \sum_{k=1}^{\infty} f(k)P(X=k) = E(f(X))$$

6. (a) Pour $d \in \mathbb{N}^*$ posons $\mathbf{1}_d : \mathbb{N}^* \to \{0,1\}$ avec $\mathbf{1}_d(n) = 1$ si $d \mid n$ et $\mathbf{1}_d(n) = 0$ si $d \nmid n$. On a $r(n) = \sum_{d \mid n} 1 = \sum_{d=1}^{+\infty} \mathbf{1}_d(n)$. Considérons la suite double $u_{d,n}(s) = \frac{\mathbf{1}_d(n)}{n^s}$.

Pour d fixé dans \mathbb{N}^* on a $|u_{d,n}(s)| \leq \frac{1}{n^s}$, on a s > 1 donc la série $\sum_{n \geq 1} |u_{d,n}(s)|$ converge, soit $\sigma_d = \sum_{n=1}^{+\infty} |u_{d,n}(s)|$.

On a $\sigma_d = \sum_{k=1}^{+\infty} \frac{1}{(kd)^s} = \frac{\zeta(s)}{d^s}$ donc la série $\sum_{d \ge 1} \sigma_d$ converge ce qui assure que la famille $(u_{d,n}(s))$ est sommable pour

Le théorème de sommation par paquets donne

$$\sum_{n=1}^{+\infty} \sum_{d=1}^{+\infty} u_{d,n}(s) = \sum_{d=1}^{+\infty} \sum_{n=1}^{+\infty} u_{d,n}(s)$$

la première somme vaut $\sum_{n=1}^{+\infty} \frac{1}{n^s} \sum_{d=1}^{+\infty} \mathbf{1}_d(n) = \sum_{n=1}^{+\infty} r(n) n^{-s}$ et la seconde vaut $\sum_{d=1}^{+\infty} \frac{1}{d^s} \sum_{k=1}^{\infty} \frac{1}{n^s} = \zeta(s)^2$, d'où

$$\sum_{n=1}^{+\infty} r(n)n^{-s} = \zeta(s)^2, \forall s > 1$$

- (b) On a $0 \le r_i(n) \le r(n)$ donc $|g(n)| \le 2r(n)$ et $|g(n)n^{-s}| \le 2r(n)n^{-s}$ et par théorème de comparaison la série $\sum g(n)n^{-s}$ converge absolument pour s>1
- 7. (a) Soit $x \in \mathbb{N}^*$, x admet un nombre fini de diviseurs premiers donc il existe N tel que pour tout $k \geq N$, $\nu_{p_k}(x) = 0$. On a alors

$$\forall n \ge N-1, \ \prod_{k=1}^{n} p_k^{\nu_{p_k}(x)} = \prod_{k=1}^{N-1} p_k^{\nu_{p_k}(x)} = x$$

La suite $\left(\prod\limits_{k=1}^n p_k^{\nu_{p_k}(x)}\right)_{n\in\mathbb{N}^*}$ est stationnaire et converge vers x, d'où la converge simple de $\left(x\mapsto\prod\limits_{k=1}^n p_k^{\nu_{p_k}(x)}\right)_{n\in\mathbb{N}^*}$ sur \mathbb{N}^* vers $Id_{\mathbb{N}^*}$

(b) On applique la question 5) à la suite de fonctions : $f_n: x \mapsto \prod_{k=1}^n g(p_k^{\nu_{p_k}(x)})$. Comme g est multiplicative alors $f_n(x) = g\left(\prod_{k=1}^n p_k^{\nu_{p_k}(x)}\right)$ pour tout $x \in \mathbb{N}^*$.

Pour $x \in \mathbb{N}^*$, la suite $\left(g\left(\prod_{k=1}^n p_k^{\nu_{p_k}(x)}\right)\right)_{n \in \mathbb{N}^*}$ est stationnaire et converge vers g(x) donc

$$\forall x \in \mathbb{N}^*, \lim_{n \to +\infty} f_n(x) = g(x)$$

De plus on a $|g(x)| \leq 2r(x)$, et $\sum r(n)n^{-s}$ est absolument convergente, donc

$$|f_n(x)| \le 2r(\prod_{k=1}^n p_k^{\nu_{p_k}(x)}) \le 2r(x) \operatorname{car} \prod_{k=1}^n p_k^{\nu_{p_k}(x)}|x|$$

La convergence de $\sum r(n)n^{-s}$ assure l'existence de E(r(X)). La question 5) donne

$$\lim_{n\to +\infty} E\left(\prod_{k=1}^n g(p_k^{\nu_{p_k}(X)})\right) = E(g(X))$$

Les variables $\nu_{p_k}(X)$, $k \in \mathbb{N}^*$, sont indépendantes donc les variables $g(p_k^{\nu_{p_k}(X)})$, $k \in \mathbb{N}^*$, le sont, donc

$$E(g(X)) = \lim_{n \to +\infty} \prod_{k=1}^{n} E\left(g(p_k^{\nu_{p_k}(X)})\right)$$

8. (a) Le théorème de transfert donne

$$E(g(p^{\nu_p(X)})) = \sum_{n=0}^{\infty} g(p^n) P(\nu_p(X) = n)$$
$$= \sum_{n=0}^{\infty} g(p^n) \frac{1}{p^{sn}} \left(1 - \frac{1}{p^s}\right)$$

Si $p \equiv 1[4]$ alors $g(p^n) = n + 1$, on a donc

$$\begin{split} E(g(p^{\nu_p(X)})) &= \left(1 - \frac{1}{p^s}\right) \sum_{n=0}^{\infty} (n+1) \left(\frac{1}{p^s}\right)^n \\ &= \frac{1}{1 - \frac{1}{n^s}} \end{split}$$

$$\operatorname{car} \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2} \operatorname{si} |x| < 1.$$

(b) Si $p \equiv 3[4]$, on a

$$E(g(p^{\nu_p(X)})) = \sum_{n=0}^{\infty} g(p^n) P(\nu_p(X) = n)$$

$$= \left(1 - \frac{1}{p^s}\right) \sum_{n=0}^{\infty} \frac{1}{2} (1 + (-1)^n) \left(\frac{1}{p^s}\right)^n$$

$$= \frac{1}{2} \left(1 - \frac{1}{p^s}\right) \left(\frac{1}{1 - p^{-s}} + \frac{1}{1 + p^{-s}}\right)$$

$$= \frac{1}{1 + p^{-s}}$$

(c) Si k = 1, on a $p_1 = 2$, alors

$$E(g(2^{\nu_2(X)})) = \sum_{n=0}^{\infty} g(2^n) \frac{1}{2^{sn}} \left(1 - \frac{1}{2^s}\right)$$
$$= (1 - 2^{-s}) \sum_{n=0}^{\infty} (2^{-s})^n$$
$$= 1$$

Si $k \geq 2$ alors p_k est congru à 1 ou 3 modulo 4, les formules obtenues en a) et b) s'écrivent

$$E(g(p^{\nu_{p_k}(X)})) = \frac{1}{1 - \chi_4(p_k)p_b^{-s}}$$

la formule est valable pour k = 1. La question 7.b) donne

$$E(g(X)) = \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \chi_4(p_k) p_k^{-s}}$$

9. (a) On a $|\chi_4(p^{\nu_p(X)})| \le 1$ donc $E(\chi_4(p^{\nu_p(X)}))$ existe, le théorème de transfert donne

$$E(\chi_4(p^{\nu_p(X)})) = \sum_{n=0}^{\infty} \chi_4(p^n) P(\nu_p(X) = x)$$

$$= (1 - p^{-s}) \sum_{n=0}^{\infty} \chi_4(p^n) \frac{1}{p^{sn}}$$

$$= (1 - p^{-s}) \sum_{n=0}^{\infty} \chi_4(p)^n \frac{1}{p^{sn}} \quad (\chi_4 \text{ est totalement multiplicative})$$

$$= \frac{1 - p^{-s}}{1 - \chi_4(p) p^{-s}}$$

(b) Comme dans la question 7), posons $f_n(x) = \chi_4 \left(\prod_{k=1}^n p_k^{\nu_{p_k}(x)} \right)$. Pour un x fixé, la suite est stationnaire et $f_n(x) \underset{n \to +\infty}{\to} \chi_4(x)$. $\forall x, |f_n(x)| \le 1$, 1 est d'espérance finie, la question 5) donne

$$E(\chi_4(X)) = \lim_{n \to +\infty} \prod_{k=1}^n E(\chi_4(p_k^{\nu_{p_k}(x)}))$$

De 9.a), on a

$$\prod_{k=1}^{n} E(\chi_4(p_k^{\nu_{p_k}(x)})) = \frac{\prod_{k=1}^{n} (1 - p_k^{-s})}{\prod_{k=1}^{n} (1 - \chi_4(p_k) p_k^{-s})}$$

Comme $\prod_{k=1}^{n} (1 - p_k^{-s}) \xrightarrow[n \to +\infty]{} \zeta(s)^{-1}$ (d'après 2.b)), on obtient

$$E(\chi_4(X)) = \zeta(s)^{-1} \lim_{n \to +\infty} \prod_{k=1}^n \frac{1}{1 - \chi_4(p_k)p_k^{-s}}$$

(c) On a
$$E(g(X)) = \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \chi_4(p_k)p_k^{-s}}$$
 donc $E(g(X)) = \zeta(s)E(\chi_4(X))$. D'autre part

$$E(\chi_4(X)) = \sum_{n=1}^{\infty} \chi_4(n) P(X=n)$$

$$= \sum_{k=0}^{\infty} \chi_4(2k+1) P(X=2k+1)$$

$$= \sum_{k=0}^{\infty} (-1)^k \zeta(s)^{-1} \frac{1}{(2k+1)^s}$$

Ce qui donne

$$E(g(X)) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^s}$$

Partie II

10. (a) Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. On a

$$\sin((2n+1)\theta) = \operatorname{Im} \left((\cos(\theta) + i\sin(\theta))^{2n+1} \right)
= \operatorname{Im} \left(\sum_{k=0}^{2n+1} {2n+1 \choose k} \cos^{2n+1-k}(\theta) (i\sin(\theta))^k \right)
= \sum_{k=0}^n {2n+1 \choose 2k+1} \cos^{2n-2k}(\theta) (-1)^k \sin^{2k+1}(\theta)
= \sin(\theta) \sum_{k=0}^n (-1)^k {2n+1 \choose 2k+1} (1-\sin^2(\theta))^{n-k} (\sin^2(\theta))^k$$

finalement

$$\sin((2n+1)\theta) = \sin(\theta)P_n(\sin^2(\theta)) \text{ avec } P_n(X) = \sum_{k=0}^n (-1)^k \binom{2n+1}{2k+1} (1-X)^{n-k} X^k$$

(b) On a $P_n(\sin^2(\frac{k\pi}{2n+1}))$ pour $k \in \{1,..,n\}$, donc P_n admet n racines distinctes et il est de degré au plus égale à n, ainsi les racines de P_n sont exactement les $\sin^2(\frac{k\pi}{2n+1})$ pour $k \in \{1,..,n\}$. La factorisation de P_n s'écrit

$$P_n(x) = a_n \prod_{k=1}^{n} \left(x - \sin^2 \left(\frac{k\pi}{2n+1} \right) \right)$$

avec $a_n = \frac{P_n(0)}{\prod\limits_{k=1}^n \left(-\sin^2\left(\frac{k\pi}{2n+1}\right)\right)}$ et $P_n(0) = 2n+1$, ce qui donne

$$P_n(x) = (2n+1) \prod_{k=1}^{n} \left(1 - \frac{x}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right)$$

(c) Soit $\theta = \frac{\pi x}{2n+1}$, on a $\sin((2n+1)\theta) = \sin(\theta)P_n(\sin^2(\theta))$ donc

$$\sin(\pi x) = (2n+1)\sin\left(\frac{\pi x}{2n+1}\right) \prod_{k=1}^{n} \left(1 - \frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)}\right)$$

11. (a) Soit $x \in \mathbb{R} \setminus \mathbb{Z}$ et $m \in \mathbb{N}$ tel que m > |x|. On a $\frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \xrightarrow[n \to +\infty]{} \frac{x^2}{k^2}$ et $(2n+1)\sin\left(\frac{\pi x}{2n+1}\right) \xrightarrow[n \to +\infty]{} \pi x$ donc

$$\lim_{n \to +\infty} u_{m,n}(x) = \pi x \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2}\right).$$

De la question 10.c) on a $u_{n,m}(x)v_{n,m}(x)=\sin(\pi x)$. Comme $x\notin\mathbb{Z}$ alors $\pi x\prod_{k=1}^m\left(1-\frac{x^2}{k^2}\right)\neq 0$ et donc

$$v_m(x) = \lim_{n \to +\infty} v_{m,n}(x) = \frac{\sin(\pi x)}{\pi x} \prod_{k=1}^m \left(1 - \frac{x^2}{k^2}\right)^{-1}$$

(b) On a |x| < m, alors pour $k \in \{m+1,..,n\}$ on a

$$0 < \frac{\pi|x|}{2n+1} < \frac{\pi m}{2n+1} < \frac{k\pi}{2n+1} < \frac{\pi}{2}$$

la fonction $t \mapsto \sin^2(t)$ est croissante sur $\left[0, \frac{\pi}{2}\right]$, on en déduit que $0 \le \frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \le 1$ et $v_{n,m}(x) \le 1$.

La fonction $t \mapsto \sin(t)$ est concave sur $\left[0, \frac{\pi}{2}\right]$ donc sa courbe est au dessus de la corde : $\frac{2t}{\pi} \le \sin(t) \ \forall t \in \left[0, \frac{\pi}{2}\right]$. Par suite

$$\forall t \in \left[0, \frac{\pi}{2}\right], \ 0 \le \frac{4}{\pi^2} t^2 \le \sin^2(t) \le t^2$$

on a $\frac{\pi|x|}{2n+1}$ et $\frac{k\pi}{2n+1}$ sont dans $\left[0,\frac{\pi}{2}\right]$ pour $k\geq m+1>|x|$ donc

$$\frac{\sin^2(\frac{\pi x}{2n+1})}{\sin^2(\frac{k\pi}{2n+1})} \le \frac{\left(\frac{\pi x}{2n+1}\right)^2}{\frac{4}{\pi^2} \left(\frac{k\pi}{2n+1}\right)^2}$$

et

$$1 - \frac{\sin^2(\frac{\pi x}{2n+1})}{\sin^2(\frac{k\pi}{2n+1})} \ge 1 - \frac{\pi^2 x^2}{4k^2} \ge 0$$

Pour $k \ge m+1 > |x|$, on fait le produit des inégalités ce qui permet de minorer $v_{n,m}(x)$. Finalement

$$1 \ge v_{n,m}(x) \ge \prod_{k=m+1}^{n} \left(1 - \frac{\pi^2 x^2}{4k^2}\right)$$

Posons $r_{n,m} = \prod_{k=m+1}^{n} \left(1 - \frac{\pi^2 x^2}{4k^2}\right)$, on a

$$r_{n,m} = \exp\left(\sum_{k=m+1}^{n} \ln\left(1 - \frac{\pi^2 x^2}{4k^2}\right)\right)$$

Comme $\ln\left(1-\frac{\pi^2x^2}{4k^2}\right) \underset{k\to+\infty}{\sim} -\frac{\pi^2x^2}{4k^2}$ donc la série $\sum \ln\left(1-\frac{\pi^2x^2}{4k^2}\right)$ est convergente , la suite $(\ln(r_{n,m}))_{n\geq m+1}$ converge et

$$\lim_{n \to +\infty} r_{m,n} = \exp\left(\sum_{k=m+1}^{\infty} \ln\left(1 - \frac{\pi^2 x^2}{4k^2}\right)\right)$$

Ce qui donne

$$1 \ge v_m(x) \ge \exp\left(\sum_{k=m+1}^{\infty} \ln\left(1 - \frac{\pi^2 x^2}{4k^2}\right)\right)$$

 $\sum_{k=m+1}^{\infty} \ln\left(1 - \frac{\pi^2 x^2}{4k^2}\right)$ est le reste d'une série convergente donc il tend vers 0 quand $m \to +\infty$, le théorème d'encadrement donne

$$\lim_{m \to +\infty} v_m(x) = 1$$

(c) De la question 11.a), on a pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$

$$\lim_{m \to +\infty} \frac{\sin(\pi x)}{\pi x} \prod_{k=1}^{m} \left(1 - \frac{x^2}{k^2}\right)^{-1} = 1$$

et

$$\sin(\pi x) = \pi x \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{x^2}{k^2} \right)$$

La relation est aussi valable pour $x \in \mathbb{Z}$.

Partie III

12. On remarque que

$$\Gamma_n(x) = \frac{1}{x}e^{-\gamma x} \exp\left(\sum_{k=1}^n \left(\frac{x}{k} - \ln(1 + \frac{x}{k})\right)\right)$$

Comme $\frac{x}{k} - \ln(1 + \frac{x}{k}) \underset{k \to +\infty}{\sim} \frac{x^2}{2k^2}$ donc la série $\sum \left(\frac{x}{k} - \ln(1 + \frac{x}{k})\right)$ est convergente et $(\Gamma_n(x))_{n \in \mathbb{N}^*}$ converge. Ainsi $(\Gamma_n)_{n\geq 1}$ converge simplement sur \mathbb{R}^{+*} .

13. On a

$$\frac{\Gamma_n(x+1)}{\Gamma_n(x)} = \frac{x}{x+1} e^{-\gamma} \exp\left(\sum_{k=1}^n \frac{1}{k} - \ln(1 + \frac{x+1}{k}) + \ln(1 + \frac{x}{k})\right)
= \frac{x}{x+1} \exp\left(\left(\sum_{k=1}^n \frac{1}{k} - \gamma\right) + \sum_{k=1}^n (\ln(x+k) - \ln(x+k+1))\right)
= \frac{x}{x+1} \exp\left(\left(\sum_{k=1}^n \frac{1}{k} - \gamma\right) + (\ln(x+1) - \ln(x+n+1))\right)
= \frac{x}{x+1} \exp\left(\left(\sum_{k=1}^n \frac{1}{k} - \ln n - \gamma\right) + \left(\ln(x+1) - \ln(1 + \frac{x+1}{n})\right)\right)$$

On sait que $\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma \xrightarrow[n \to +\infty]{} 0$ donc $\frac{\Gamma_n(x+1)}{\Gamma_n(x)} \xrightarrow[n \to +\infty]{} x$, de plus $\frac{\Gamma_n(x+1)}{\Gamma_n(x)} \xrightarrow[n \to +\infty]{} \frac{\Gamma(x+1)}{\Gamma(x)}$ par unicité de la limite on

$$\Gamma(x+1) = x\Gamma(x)$$

14. (a) On a

$$\Gamma(x) = \frac{1}{x}e^{-\gamma x} \exp\left(\sum_{k=1}^{+\infty} \left(\frac{x}{k} - \ln(1 + \frac{x}{k})\right)\right)$$

- Posons $f_n(x) = \frac{x}{n} \ln(1 + \frac{x}{n})$, $x \in]0, +\infty[$. $\sum f_n$ converge simplement sur $]0, +\infty[$ (question 10). Pour tout n, f_n est de classe \mathcal{C}^2 sur $]0, +\infty[$ et

$$f'_n(x) = \frac{1}{n} - \frac{1}{n+x} = \frac{x}{n(n+x)}$$
, $f''_n(x) = \frac{1}{(n+x)^2}$

- $\sum f'_n$ converge simplement sur $]0, +\infty[$. $\sup_{x \in]0, +\infty[} |f''_n(x)| = \frac{1}{n^2}$ donc $\sum f''_n$ converge normalement sur $]0, +\infty[$.

Le théorème de dérivation des séries de fonctions donne : la fonction $x \mapsto \sum_{n=1}^{+\infty} f_n''(x)$ est de classe \mathcal{C}^2 sur $]0, +\infty[$ et

$$\left(\sum_{n=1}^{+\infty} f_n(x)\right)' = \sum_{n=1}^{+\infty} \frac{x}{n(n+x)} , \left(\sum_{n=1}^{+\infty} f_n(x)\right)'' = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}. \text{ Ainsi } \Gamma \text{ est de classe } C^2 \text{ sur }]0, +\infty[.$$
 De plus

$$\ln(\Gamma)(x) = -\ln(x) - \gamma x + \sum_{n=1}^{\infty} f_n(x)$$

donc

$$(\ln(\Gamma))''(x) = \frac{1}{x^2} + \sum_{n=1}^{\infty} f_n''(x) = \sum_{n=0}^{\infty} \frac{1}{(n+x)^2}$$

- (b) $\sum f_n''$ converge normalement sur $]0,+\infty[$ et $f_n''(x)\underset{x\to+\infty}{\to}0$, le théorème d'interversion de \sum et lim donne $\sum_{n=1}^{\infty} f_n''(x) \underset{x \to +\infty}{\to} 0 \text{ d'où } \lim_{x \to +\infty} (\ln(\Gamma))''(x) = 0.$
- 15. (a) Soit x > 0, on a

$$S(x+1) = \ln\left(\frac{f(x+1)}{\Gamma(x+1)}\right) = \ln\left(\frac{xf(x)}{x\Gamma(x)}\right) = S(x)$$

donc S est 1-périodique.

Posons $g(x) = \ln(f(x))$, elle verifie $g(x+1) = \ln x + g(x)$ et $g''(x+1) = -\frac{1}{x^2} + g''(x)$, ce qui donne pour $n \in \mathbb{N}$

$$g''(x) - \sum_{k=0}^{n} \frac{1}{(x+k)^2} = g''(x+n)$$

comme g est convexe alors $g'' \ge 0$ donc $g''(x) - \sum_{k=0}^{n} \frac{1}{(x+k)^2} \ge 0$, ceci est valable pour tout $n \in \mathbb{N}$, par passage à la limite sur n on obtient $S''(x) = g''(x) - (\ln(\Gamma))''(x) \ge 0$ et S est convexe sur $]0, +\infty[$.

(b) S est convexe donc sa dérivée S'est croissante, S est 1-périodique donc pour tout $n \ge 1$ S(n+1) = S(n), le théorème de Rolle assure que S' s'annule sur chaque intervalle [n, n+1] donc S' est nulle sur $[1, +\infty[$ et S est constante sur $[1, +\infty[$, par périodicité elle est constante sur $]0, +\infty[$ et S(x) = S(1). Comme

$$\Gamma_n(1) = e^{-\gamma} \exp\left(\sum_{k=1}^n \left(\frac{1}{k} - \ln(1 + \frac{1}{k})\right)\right)$$
$$= \exp\left(\left(\sum_{k=1}^n \frac{1}{k} - \ln(n) - \gamma\right) - \ln(\frac{n}{n+1})\right) \underset{n \to +\infty}{\to} 1$$

d'où $\Gamma(1)=1$, or f(1)=1 donc S(1)=0 et S(x)=0 $\forall x>0$, ainsi $f=\Gamma$. Ce résultat est le Théorème de Bohr-Mollerup.

16. Soit a > 0. On considére les fonctions

$$f(x) = \frac{\Gamma(x+a)}{\Gamma(a)} \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+a}} dt \text{ et } F(x) = \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+a}} dt$$

On a applique le résultat de la question précédente à f.

- Montrons que F est de classe C^2 sur $]0, +\infty[$.Notons $g(x,t) = \frac{t^{x-1}}{(1+t)^{x+a}}$.

 Pour tout x > 0, $g_x : t \mapsto \frac{t^{x-1}}{(1+t)^{x+a}}$ est continue sur $]0, +\infty[$, $g_x(t) \underset{t \to 0}{\sim} t^{x-1}$ et $g_x(t) \underset{t \to +\infty}{\sim} \frac{1}{t^{1+a}}$.
 - Puisque a > 0 et x > 0, g_x est intégrable sur $]0, +\infty[$.
 - Pour tout t > 0, $x \mapsto g(x,t)$ est de classe \mathcal{C}^2 sur $]0, +\infty[$ et :

$$\frac{\partial g}{\partial x} = \frac{t^{x-1}}{(1+t)^{x+a}} \ln(\frac{t}{1+t}) \text{ et } \frac{\partial^2 g}{\partial x^2} = \frac{t^{x-1}}{(1+t)^{x+a}} \left(\ln(\frac{t}{1+t})\right)^2$$

— Soit $[b,c] \subset]0,+\infty[$. Pour $x \in [b,c]$, on $a\left(\frac{t}{1+t}\right)^x \leq \left(\frac{t}{1+t}\right)^b + \left(\frac{t}{1+t}\right)^c$ par suite

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le \left| \frac{\partial g}{\partial x}(b,t) \right| + \left| \frac{\partial g}{\partial x}(c,t) \right| = \varphi(t)$$

$$\left|\frac{\partial^2 g}{\partial x^2}(x,t)\right| \leq \left|\frac{\partial^2 g}{\partial x^2}(b,t)\right| + \left|\frac{\partial^2 g}{\partial x^2}(c,t)\right| = \psi(t)$$

Les fonctions φ et ψ sont continues et intégrables sur $]0, +\infty[$.

Le théorème de dérivation donne $F \in \mathcal{C}^2([b,c])$ pour tout $[b,c] \subset]0,+\infty[$ donc $F \in \mathcal{C}^2([0,+\infty[)$ avec

$$F'(x) = \int_0^\infty \ln(\frac{t}{1+t}) \frac{t^{x-1}}{(1+t)^{x+a}} dt \text{ et } F''(x) = \int_0^\infty \ln(\frac{t}{1+t})^2 \frac{t^{x-1}}{(1+t)^{x+a}} dt$$

On en déduit que f est de classe C^2 sur \mathbb{R}^{+*} .

• Montrons que $\ln(f)$ est convexe, comme $f(x) = \frac{\Gamma(x+a)}{\Gamma(a)} F(x)$ et $\ln(\Gamma)$ est convexe, il suffit de le prouver pour $\ln(F)$

On a $\ln(F)'' = \frac{FF'' - F'^2}{F^2}$, remarquons

$$\ln(\frac{t}{1+t})\frac{t^{x-1}}{(1+t)^{x+a}} = \left(\frac{t^{x-1}}{(1+t)^{x+a}}\right)^{1/2} \left(\left(\frac{t^{x-1}}{(1+t)^{x+a}}\right)^{1/2} \ln(\frac{t}{1+t})\right)$$

l'inégalité de Cauchy-Schwartz donne

$$\left(\int_0^\infty \ln(\frac{t}{1+t}) \frac{t^{x-1}}{(1+t)^{x+a}} dt\right)^2 \le \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+a}} dt \cdot \int_0^\infty \frac{t^{x-1}}{(1+t)^{x+a}} \ln^2(\frac{t}{1+t}) dt$$

donc $FF'' - F'^2 \ge 0$ et $\ln(F)$ est convexe

- $f(1) = \frac{\Gamma(a+1)}{\Gamma(a)} \int_0^\infty \frac{dt}{(1+t)^{a+1}} = a \left[\frac{(1+t)^{-a}}{-a} \right]_0^{+\infty} = 1$. On a enfin

$$f(x+1) = (x+a)\frac{\Gamma(x+a)}{\Gamma(a)} \int_0^{+\infty} \frac{1}{(1+t)^{x+1+a}} t^x dt$$
$$= \frac{\Gamma(x+a)}{\Gamma(a)} \int_0^{+\infty} \left(\frac{-1}{(1+t)^{x+a}}\right)' t^x dt$$

une intégration par parties donne $f(x+1) = \frac{\Gamma(x+a)}{\Gamma(a)} \int_0^{+\infty} \frac{x}{(1+t)^{x+a}} t^{x-1} dt$ donc f(x+1) = xf(x). De la question précédente on a $f = \Gamma$, ce qui donne $\forall x > 0$, $\int_0^{\infty} \frac{t^{x-1}}{(1+t)^{x+a}} dt = \frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)}$.

17. Soit $x \in]0,1[$, on prend a=1-x, la question précédente donne

$$\int_0^\infty \frac{t^{x-1}}{1+t} dt = \Gamma(x)\Gamma(1-x) \quad (\Gamma(1)=1)$$

On a $\Gamma(x)\Gamma(1-x) = \lim_{n \to +\infty} \Gamma_n(x)\Gamma_n(1-x)$ et

$$\Gamma_{n}(x)\Gamma_{n}(1-x) = \frac{e^{-\gamma}}{x(1-x)} \prod_{k=1}^{n} \frac{e^{xk^{-1}}}{1+xk^{-1}} \prod_{k=1}^{n} \frac{e^{(1-x)k^{-1}}}{1+(1-x)k^{-1}}$$

$$= \frac{e^{-\gamma}}{x(1-x)} \prod_{k=1}^{n} \frac{k^{2}e^{\frac{1}{k}}}{(k+x)(k+1-x)}$$

$$= \exp\left(-\gamma + \sum_{k=1}^{n} \frac{1}{k}\right) \frac{\prod_{k=1}^{n} k^{2}}{x \prod_{k=1}^{n} (k+x)(k+1-x)}$$

$$= \exp\left(-\gamma - \ln(n) + \sum_{k=1}^{n} \frac{1}{k}\right) \frac{n}{x(n+1-x)} \prod_{k=1}^{n} \frac{1}{1-\frac{x^{2}}{k^{2}}}$$

on simplifie $\prod_{k=1}^{n} (k+x)(k+1-x) = \prod_{k=1}^{n} (k+x) \prod_{k=2}^{n+1} (k-x) = \frac{1-x}{n+1-x} \prod_{k=1}^{n} (k^2-x^2)$ cela donne

$$\Gamma_n(x)\Gamma_n(1-x) = \exp\left(-\gamma - \ln(n) + \sum_{k=1}^n \frac{1}{k}\right) \frac{n}{x(n+1-x)} \prod_{k=1}^n \frac{1}{1 - \frac{x^2}{k^2}}$$

par passage à la limite

$$\Gamma(x)\Gamma(1-x) = \frac{1}{x} \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \frac{x^2}{k^2}}$$

D'après 11.c) on a,

$$\Gamma(x)\Gamma(1-x) = \frac{1}{x} \frac{\pi x}{\sin(\pi x)}$$

Finalement $\int_0^\infty \frac{t^{x-1}}{1+t} dt = \frac{\pi}{\sin(\pi x)}$.

Partie IV

18. (a) Soit $x \in]0,1[$ on a $\frac{\pi}{\sin(\pi x)} = \int_0^1 \frac{t^{x-1}}{1+t} dt + \int_1^\infty \frac{t^{x-1}}{1+t} dt$, posons $u = \frac{1}{t}$ alors

$$\int_{1}^{\infty} \frac{t^{x-1}}{1+t} dt = \int_{0}^{1} \frac{u^{-x}}{1+u} du$$

et

$$\frac{\pi}{\sin(\pi x)} = \int_0^1 \frac{t^{x-1} + t^{-x}}{1+t} dt$$
$$= \int_0^1 \sum_{n=0}^{+\infty} (-1)^n \left(t^{n+x-1} + t^{n-x} \right) dt$$

Soit $f_n(t) = (-1)^n (t^{n+x-1} + t^{n-x})$ et $S_n(x) = \sum_{k=0}^n f_n(t)$, on a

- (S_n) converge simplement sur]0,1[vers une fonction continue.
- Pour tout entier n et tout $t \in]0,1[$,

$$|S_n(u)| = \left| (t^{x-1} + t^{-x}) \frac{1 - (-t)^{n+1}}{1+t} \right| \le \frac{2(1+t^{-x})}{1+t} = \varphi(t)$$

 φ est continue et intégrable sur]0,1] , le théorème de convergence dominée donne

$$\int_0^1 \frac{t^{x-1} + t^{-x}}{1+t} dt = \sum_{n=0}^\infty \int_0^1 f_n(t) dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n}{n+x} + \frac{(-1)^n}{n+1-x}$$

les série $\sum \frac{(-1)^n}{n+x}$ et $\sum \frac{(-1)^n}{n+1-x}$ convergent , d'où

$$\forall x \in]0,1[, \frac{\pi}{\sin(\pi x)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+x} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1-x}$$

(b) Soit $x \in]-\frac{1}{2},\frac{1}{2}[$, puisque $x+\frac{1}{2} \in]0,1[$ et $\sin(\pi(x+\frac{1}{2}))=\cos(\pi x)$ alors d'après la question précédente

$$\frac{\pi}{\cos(\pi x)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+x+\frac{1}{2}} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+\frac{1}{2}-x}$$

On pour $n \ge 0$ on a $\left| \frac{x}{n + \frac{1}{2}} \right| < 1$, et

$$\frac{1}{n+x+\frac{1}{2}} = \sum_{k=0}^{\infty} \frac{x^k(-1)^k}{(n+\frac{1}{2})^{k+1}} \ , \ \frac{1}{n+\frac{1}{2}-x} = \sum_{n=0}^{\infty} \frac{x^k}{(n+\frac{1}{2})^{k+1}}$$

ce qui donne

$$\frac{\pi}{\cos(\pi x)} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} (-1)^n \frac{2^{k+1} x^k (1 + (-1)^k)}{(2n+1)^{k+1}}$$

 $(1+(-1)^k)$ est nulle quand k est impair

$$\frac{\pi}{\cos(\pi x)} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{2^{2k+2} x^{2k} (-1)^n}{(2n+1)^{2k+1}}$$

Pour intervertir les sommes écrivons

$$\frac{\pi}{\cos(\pi x)} = \sum_{n=0}^{\infty} \frac{4(-1)^n}{2n+1} + \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} \frac{2^{2k+2} x^{2k} (-1)^n}{(2n+1)^{2k+1}}$$

on justifie la sommabilité de la famille double $u_{n,k}=\frac{2^{2k+2}x^{2k}(-1)^n}{(2n+1)^{2k+1}}$ pour $k\in\mathbb{N}^*,\ n\in\mathbb{N}$. Pour un $n\geq 0$ fixé, on a $|u_{n,k}|=4\frac{(2x)^{2k}}{(2n+1)^{2k+1}}$, $x\in]-\frac{1}{2},\frac{1}{2}[$ donc $\sum\limits_{k\geq 1}|u_{n,k}|$ converge et

$$\sigma_n = \sum_{k=1}^{\infty} |u_{n,k}|$$

$$= \sum_{k=1}^{\infty} 4 \frac{(2x)^{2k}}{(2n+1)^{2k+1}}$$

$$= \frac{4}{2n+1} \frac{\frac{4|x|^2}{(2n+1)^2}}{1 - \frac{4|x|^2}{(2n+1)^2}}$$

$$\sum_{n \to +\infty}^{\infty} \frac{2|x|^2}{n^3}$$

donc $\sum \sigma_n$ converge et la famille $(u_{n,k})_{n\geq 0, k\geq 1}$ est sommable, par suite

$$\frac{\pi}{\cos(\pi x)} = \sum_{n=0}^{\infty} \frac{4(-1)^n}{2n+1} + \sum_{k=1}^{\infty} \sum_{n=0}^{\infty} \frac{2^{2k+2} x^{2k} (-1)^n}{(2n+1)^{2k+1}}$$
$$= \sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} \right) 2^{2k+2} x^{2k}$$

(c) Soit $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, posons $t=\pi x$ on obtient

$$\frac{1}{\cos(t)} = \sum_{k=0}^{\infty} a_k t^{2k} , \text{ avec } a_n = \frac{2^{2k+2}}{\pi^{2k+1}} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^{2k+1}}$$

v est donc DSE en 0 de rayon $R = \frac{\pi}{2}$ ($R \leq \frac{\pi}{2}$ et v non définie en $\frac{\pi}{2}$) . v est de classe \mathcal{C}^{∞} et $a_k = \frac{v^{(2k)}(0)}{(2k)!}$. Ainsi

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} = \frac{E_{2k}}{(2k)!} \frac{\pi^{2k+1}}{2^{2k+2}} \text{ avec } E_{2k} = v^{(2k)}(0)$$

19. (a) Soit $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on a $\cos(t)v(t)=1$. Dérivons 2n fois cette relation avec la formule de Leibniz :

$$\sum_{k=0}^{2n} {2n \choose k} v^{(k)}(x) \left(\cos(t)\right)^{(2n-k)} = \sum_{k=0}^{2n} {2n \choose k} v^{(k)}(x) \cos(x + (2n-k)\frac{\pi}{2}) = 0$$

Pour x=0 on a $\cos((2n-k)\frac{\pi}{2})=0$ si k=2h+1 et $\cos((2n-k)\frac{\pi}{2})=(-1)^{n-h}$ si k=2h , donc

$$\sum_{h=0}^{n} {2n \choose 2h} (-1)^{n-h} v^{(2h)}(0) = 0$$

on factorise par $(-1)^n$ on obtient

$$\sum_{k=0}^{n} \binom{2n}{2k} (-1)^k E_{2k} = 0$$

On a $E_0 = v(0) = 1$, la relation précédente, pour n = 1 et 2, donne $E_0 - E_2 = 0$ et $E_0 - 6E_2 + E_4 = 0$, donc $E_2 = 1$ et $E_4 = 5$.

(b) On a de 18.c)
$$\frac{E_{2k}}{(2k)!} \frac{\pi^{2k+1}}{2^{2k+2}}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{E_2}{2!} \frac{\pi^3}{2^4} = \frac{\pi^3}{2^5}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^5} = \frac{E_4}{4!} \frac{\pi^5}{2^6} = \frac{5\pi^5}{3.29}$$

D'après la question 9.c) on a : si s=3, $E(g(X))=\frac{\pi^3}{2^5}$; si s=5, $E(g(X))=\frac{5\pi^5}{3.2^9}.$