

Mathématiques 2

MP

2021

4 heures

Calculatrice autorisée

Inégalités de Bernstein

I Inégalité polynomiale de Bernstein et applications

Dans cette partie,

- si $n \in \mathbb{N}$, on note $\mathbb{C}_n[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes de degré inférieur ou égal à n;
- si $n \in \mathbb{N}^*$, on note \mathcal{S}_n le \mathbb{C} -espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{C}$ vérifiant

$$\exists (a_0,...,a_n) \in \mathbb{C}^{n+1}, \quad \exists (b_1,...,b_n) \in \mathbb{C}^n, \quad \forall t \in \mathbb{R}, \quad f(t) = a_0 + \sum_{k=1}^n \bigl(a_k \cos(kt) + b_k \sin(kt)\bigr).$$

On remarque que les éléments de \mathcal{S}_n sont des fonctions bornées ;

I.A – $Polyn\^omes\ de\ Tchebychev$

On définit la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ par $T_0=1,\,T_1=X$ et $\forall n\in\mathbb{N},\,T_{n+2}=2XT_{n+1}-T_n.$

- **Q 1.** Pour tout n dans \mathbb{N} , déterminer le degré de T_n , puis montrer que $(T_k)_{0 \leqslant k \leqslant n}$ est une base de $\mathbb{C}_n[X]$.
- **Q 2.** Montrer que, pour tous $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

I.B - Inégalité de Bernstein

Soit n un entier naturel non nul.

Q 6. Soit $A \in \mathbb{C}_{2n}[X]$, scindé à racines simples, et $(\alpha_1, ..., \alpha_{2n})$ ses racines. Montrer que

$$\forall B \in \mathbb{C}_{2n-1}[X], \quad B(X) = \sum_{k=1}^{2n} B(\alpha_k) \frac{A(X)}{(X - \alpha_k)A'(\alpha_k)}. \tag{I.1}$$

Soit P dans $\mathbb{C}_{2n}[X]$, et, pour tout $\lambda \in \mathbb{C}$, $P_{\lambda}(X) = P(\lambda X) - P(\lambda)$.

Q 7. Si $\lambda \in \mathbb{C}$, vérifier que X - 1 divise P_{λ} .

Pour tout λ dans \mathbb{C} , on note Q_{λ} le quotient de P_{λ} par X-1:

$$Q_{\lambda}(X) = \frac{P(\lambda X) - P(\lambda)}{X - 1} \in \mathbb{C}_{2n - 1}[X].$$

Q 8. Montrer que, pour tout λ dans \mathbb{C} , $Q_{\lambda}(1) = \lambda P'(\lambda)$.

On considère le polynôme $R(X) = X^{2n} + 1$. Pour k dans [1, 2n], on note $\varphi_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ et $\omega_k = e^{i\varphi_k}$.

Q 9. Montrer que

$$R(X) = \prod_{k=1}^{2n} (X - \omega_k).$$

Q 10. À l'aide de la formule (I.1), montrer que

$$\forall \lambda \in \mathbb{C}, \quad Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k$$

puis en déduire que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1 - \omega_k)^2} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1 - \omega_k)^2}. \tag{I.2}$$

Q 11. Montrer que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} + nP(\lambda).$$

On pourra appliquer l'égalité (I.2) au polynôme X^{2n} .

Soit maintenant f dans \mathcal{S}_n .

Q 12. Montrer qu'il existe $U \in \mathbb{C}_{2n}[X]$ tel que, pour tout $\theta \in \mathbb{R}$, $f(\theta) = e^{-in\theta}U(e^{i\theta})$.

Q 13. Vérifier que, pour tout $k \in [1, 2n]$, $\frac{2\omega_k}{(1-\omega_k)^2} = \frac{-1}{2\sin(\varphi_k/2)^2}$ et déduire des questions 11 et 12 que

$$\forall \theta \in \mathbb{R}, \quad f'(\theta) = \frac{1}{2n} \sum_{k=1}^{2n} f(\theta + \varphi_k) \frac{(-1)^k}{2\sin(\varphi_k/2)^2}. \tag{I.3}$$