EXERCICES MPSI

Calcul matriciel

Exercice 1

Considérons la matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

- 1) i) Calculer A^2 et A^3 . Deviner A^n pour tout $n \succeq 1$.
 - ii) Montrer ce dernier résultat.
- 2) Posons $B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Calculer B^n pour tout $n \succeq 1$.

Exercice 2

1) Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{R})$ vérifiant $A^2 = 0$. Montrer que

$$\forall k \in \mathbb{N}, \ (I_n + A)^k = I_n + kA$$

- i) Via une récurrence
- ii) Via le binôme de Newton
- 2) En déduire $\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}^k$ pour tout $k \in \mathbb{N}$.

 Donner le résultat sous forme de bloc matriciel.

Exercice 3

- 1) Considérons la matrice $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$.
 - i) Montrer que $(A I_2)$ est nilpotente.
 - ii) En déduire toutes les puissances de A.
- 2) Considérons les suites $(u_n)_n$ et $(v_n)_n$ définies par $u_0=v_0=1$ et $\forall n\in\mathbb{N},$ $\left\{\begin{array}{ll} u_{n+1}&=&5u_n-4v_n\\ v_{n+1}&=&4u_n-3v_n \end{array}\right.$
 - i) Justifier que

$$\forall n \in \mathbb{N}, \ \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = A \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$

ii) En déduire les termes généraux des suites $(u_n)_n$ et $(v_n)_n$.

Exercice 4

Considérons la matrice $A = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 3 & 6 \\ -1 & -1 & -2 \end{pmatrix}$. Posons $B = A - I_3$.

EXERCICES MPSI

- 1. Calculer B^2 .
- 2. En déduire que A est inversible et déterminer son inverse.
- 3. Déterminer A^n , pour tout $n \in \mathbb{N}$. Donner le résultat sous forme de tableau matriciel.

Exercice 5

Considérons la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- 1) i) Calculer $A^2 3A + 2I_2$.
 - ii) En déduire que A est inversible et calculer A^{-1} .
- 2) Soit $n \succeq 2$.
 - i) Déterminer le reste de la division euclidienne de X^n par (X^2-3X+2) .
 - ii) En déduire A^n . Donner-la sous forme de bloc matriciel.

Exercice 6

Considérons la matrice $B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- 1) Soit $n \succeq 1$. Soit $A \in M_n(\mathbb{C})$ un matrice nilpotente d'indice $r \in \mathbb{N}^*$. Montrer que :
 - i) A n'est pas inversible.
 - ii) $(I_n A)$ est inversible, et préciser son inverse en fonction des puissances de A.
- 2) En déduire que B est inversible et déterminer son inverse.

Exercice 7 (Matrice de rotation)

Notons pour tout réel θ , $R_{\theta} = \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{pmatrix}$

1. Montrer que

$$\forall \theta, \theta' \in \mathbb{R}, \ R_{\theta+\theta'} = R_{\theta}R_{\theta'}$$

- 2. En déduire que pour tout $\theta \in \mathbb{R}$, R_{θ} est inversible et préciser R_{θ}^{-1} .
- 3. Que vaut $(R_{\theta})^n$, pour tout $n \in \mathbb{N}^*$?
- 4. Déduire que pour tout $n \in \mathbb{N}^*$, il existe une matrice $A \in M_2(\mathbb{R})$ telle que $A^n = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Sourace 1

1) i)
$$A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} =$$

9) Ohr
$$B = \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix} = A + I_2$$

Soit $n \geq 1$. On a:

$$B'' = (A + I_{2})$$

$$= \sum_{k=0}^{n} G_{k} A_{k} I_{2}^{n-k} \left(\begin{array}{c} \text{vic le binôme de} \\ \text{New+on car } A \\ \text{d} I_{2} G_{n} \text{mutent} \end{array} \right)$$

$$= \sum_{k=0}^{n} G_{k} A_{k} I_{2}^{n-k} \left(\begin{array}{c} I_{2} = I_{2} \\ I_{2} = I_{2} \end{array} \right)$$

$$= G_{n} A_{n} + \sum_{k=1}^{n} G_{n} A_{k}$$

$$= I_{2} + \sum_{k=2}^{n} G_{n} A_{k}$$

Dante part, ona:

$$\sum_{k=1}^{n} c_{k} 2^{k-1} = \frac{1}{2} \sum_{k=1}^{n} c_{k} 2^{k} = \frac{1}{2} \left(\sum_{k=0}^{n} c_{k} 2^{k} - 1 \right)$$

$$= \frac{1}{2} \left(\sum_{k=0}^{n} c_{k} 2^{k} - 1 \right)$$

$$=\frac{1}{2}((2+1)-1)$$

Ainsi
$$B' = \frac{3}{2} \cdot A + T_{2}$$

1945 parvez écrire Bⁿ Dous forme de bloc matriciel

Sourcia 2 1) i) Par réarrana:

$$\forall k \in \mathbb{N}, \ (I_n + A)^k = I_n + kA$$

Initialisation: Pour
$$h = 0$$

Ona
$$\begin{cases}
(T_n + A)^\circ = T_n \\
T_n + 0A = T_n
\end{cases}$$

$$\mathcal{D}_{sm'}\left((T_n + A)^\circ = T_n + 0A\right)$$

Horiste': Soit kelN.

Sup que $(I_n + A)^k = I_n + kA$ Marc $(I_n + A)^{k+2} = I_n + (k+2)A$ On a $(I_n + A)$ $= (I_n + A)(I_n + A)$

$$= I_n + A + kA + kA$$

$$= I_n + (k+1)A + (\alpha A = 0)$$

$$= (\alpha A = 0)$$

no via le binome de Newton!

One (In+A) = \(\sum_{i=0}^{i} \text{ A}^i \) \(\text{Th} - i \) \(\text{Car A et} \) \(\text{In Gmmn-lat} \) \\

= \(\text{Car A}^i \) \(\text{Car Th} = \text{In} \) \\

= \(\text{Car A}^i \) \(\text{Car Th} = \text{In} \)

46+ Ona A=0, alors (+i),2, A=0)

Ainsi: $(T_n + A)^k = \sum_{i=0}^{1} G_i A^i$

$$= C_k A^0 + C_k A^1$$

$$= I_n + k A \qquad (Car C_k = 1; C_k = k; A = I_n)$$

$$= C_k A^0 + C_k A^1$$

2°) Soit $k \in \mathbb{N}$. On vent C clarker $\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}^k$.

On a perse à appliquer 101

On a
$$\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} I_2 + A \end{pmatrix}$$
; où $A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$

If on a A = 0, olors ollapses 10/1000: $(I_0 + A)^k = I_0 + kA$

 $Ainsi \left(\begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix} \right) = I_2 + kA$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2k & 4k \\ -k & -2k \\ 4k & \end{pmatrix}$$

 $\forall k \in IN, \quad \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 2k+1 \\ -k & -2k+1 \end{pmatrix}$

Finn

Exeraça 3

1) i)
$$A - I_2 = \begin{pmatrix} 4 & -4 \\ 4 & -4 \end{pmatrix}$$

Bt on a $(A - I_2)^2 = 0$ D'ai $(A - I_2)$ (or nilpotente.

ii) Voit n & IN. (On Vant A =?

On pensera au binôme de Newton

Ona A = (I,+(A-I))

Posous N=A-II3, ona:

A"= (I,+N)

= In Ch N I I (car Net Iz)

 $= \sum_{n=1}^{\infty} C_n k_n k_n \left(cor T_2^{n-k} = T_2 \right)$

= CN + C1N1 (car 41/2/N2)

= I2 +n N

$$A^{n} = \begin{pmatrix} 1+4n & -4n \\ 4n & 1-4n \end{pmatrix}$$

in) Notons
$$X_n = \begin{pmatrix} U_n \\ V_n \end{pmatrix}$$
 four tent $n \in \mathbb{N}$.

Ona: $\left(\frac{1}{2} \log N \right) \times 1 = A \times 1$

Ona: $\left(\frac{1}{2} \log N \right) \times 1 = A \times 1$

Ona: $\left(\frac{1}{2} \log N \right) \times 1 = A \times 1$

One in the inverse of a color on the inverse of a color

1) Ona
$$B = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ -1 & -1 & -3 \end{pmatrix}$$

$$\Rightarrow (A - I_3) = 0$$

$$= 7A(A-27_3)=-I_3$$

$$=) A(2I_3 - A) = I_3$$

3) On veut
$$A^n = ?$$

On pense encore à viiliser le binôme de Newton

On a
$$\delta$$
 $A^{\prime\prime} = (B + I_3)^{\prime\prime}$ (or $B = A - I_3$)

$$= \sum_{k=0}^{N} C_{k} B^{k} T_{3}^{k-k} \left(BT_{3} = T_{3}B\right)$$

$$A'' = I_3 + vB$$

$$B = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 2 & 6 \\ -1 & -1 & -3 \end{pmatrix} \text{ of } \overline{I}_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ -1 & 1 & -3 & 1 \end{pmatrix}$$

Exercia 5 1)i) A 3 A + 2 I, = 0 ii) (On a A - 3A+ & I2 = 0 $\Rightarrow A \left[\frac{1}{2} \left(3I_2 - A \right) = I_2$ D'on A est inversible et que A = \frac{1}{2}(3I_2 - A) 2) i) $(2)^{2} = (x^{2} - 3x + 2) Q(x) + R(x)$ Lavic deg(R(x)) < deg(X=3X+2) = $) x'' = (x^2 - 3x + 2) Q(x) + (ax + b)$ lon aurb EIR 1 et 2 les racines de (X-3X+2) Alars X=1 = 7 a+b = 1 X=2 = 7 2a+b = 2On recount le dystime $2a+b=2^n$. On trouve $2a = 2^n - 1$ $b = 2 - 2^n$ Le reste demandé et (21-1) X+(2-2") $(On a : X' = (X - 3X + 2) Q(x) + [(2^n - 1)X + (2 - 2^n)]$ Rengla sons X par A, on obtient: $A'' = (A'_3A + 2I_2)Q(A) + (2'_1)A + (2-2')I_2$ $2^{1} = A^{1} = (2^{1} - 1) A + (2 - 2^{1}) I_{2} = (*)$

Lxuraia b 10) i) Mane A n'est pas inversible. Raisonnous par l'absurde, et supposous que Aist monsible. 17 = 0 On soit que le produit de deux matices inversibles est une matrice inversible. Alors puis que A est invertible, il enect de même pour Ax----xA = A D'an Och moribe (2eme mithode)

1) i) deme methode

91 que An'est par unwantle

Raisonnone par l'absorde et supp que 1 inversible

Alors 3 B E Mn (6 1 + q AB = In

alors (ABI' = In'

=> A' B' = In (car B=A' et A. A-2 = A-1 A)

A. B = BA)

=> O. B' = In (car A' = 0)

=> Tn = On (ce qui est absorde

D'où An'est par invelvible

in) One
$$I_n = I_n - A^n$$
 (car $A^n = 0$)

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + A + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + \dots + I_n + \dots + A^{n-2})$$

$$= \sum_{n=(I_n - A)} (I_n + \dots + I_n + \dots + I_n + \dots + I_n + \dots + I$$

On la montre facilement par récurrance din Question: Cette égalité eth-elle vraie aussi par n=0? HnE IN A = Range Couxiert

(\frac{71}{2n}) Couxiert